Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Light Shed on the Enigma of Salt Intake and Hypertension

04.05.2009
A high salt intake has been implicated in cardiovascular disease risk for 5000 years. But salt-sensitive hypertension still remains an enigma.

Now, investigators from Germany at the University of Erlangen, the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch and Regensburg, collaborating with researchers from Finland and Austria have shed new light on the relationship between salt intake, bodily processes, and blood pressure regulation.

Within the skin, they have detected a new storage area for salt in the body. They also found out that if the process behind this storage is defect, animals become hypertensive (Nature Medicine, doi 10.1038/nm.1960)*.

Salt (natrium chloride, NaCl) is required for life. Herbivores (plant-eating animals) risk their lives to go to "salt licks" and carnivores (meat-eating animals) go to salt licks to eat herbivores in order to obtain salt.

Salt is responsible for water regulation in the body. It is taken up by the gastro-intestinal (GI) tract and, in large part, excreted by the kidneys. However, salt is also stored in cells and in the interstitium, the area between cells in the body.

Dr. Jens Titze and colleages, among them Dominik N. Müller, Wolfgang Derer, and Friedrich C. Luft from the Experimental and Clinical Research Center at the MDC, could now show that a high-salt diet in rats leads to the accumulation of salt in the interstitium in the skin. This process is carefully regulated by special white blood cells, the macrophages.

In those macrophages, the scientists found a gene regulator (transcription factor) called TonEBP (tonicity-responsible enhancer binding protein). TonEBP is activated in these cells in response to high salt and turns on a gene (VEGF-C - vascular endothelial growth factor C) that controls the production of lymphatic blood vessels. With high-salt diet the lymphatic vessels increase.

The investigators also showed that when these macrophages are depleted or if the receptor for VEGF-C is absent, the animals are not able to "store their salt" and become hypertensive. However, this process and its relevance to human disease are not yet completely understood..

Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism

Agnes Machnik1, Wolfgang Neuhofer2, Jonathan Jantsch1,3, Anke Dahlmann1, Tuomas Tammela4, Katharina Machura5, Joon-Keun Park6, Franz-Xaver Beck2, Dominik N Müller7, Wolfgang Derer8, Jennifer Goss1, Agata Ziomber1, Peter Dietsch9, Hubertus Wagner10, Nico van Rooijen11, Armin Kurtz5, Karl F Hilgers1, Kari Alitalo4, Kai-Uwe Eckardt1, Friedrich C Luft7,8, Dontscho Kerjaschki12 & Jens Titze1

1Department of Nephrology and Hypertension, and Nikolaus Fiebiger Centre for Molecular Medicine, University Clinic and Friedrich Alexander University of Erlangen-Nuremberg, Germany. 2Department of Physiology, University of Munich, Munich, Germany. 3Institute of Clinical Microbiology, Immunology and Hygiene, University Clinic of Erlangen, Germany. 4Molecular/Cancer Biology Laboratory, Biomedicum Helsinki, Helsinki, Finland. 5Institute of Physiology, University Regensburg, Regensburg, Germany. 6Division of Nephrology, Department of Medicine, Hannover Medical School, Germany. 7Max Delbrück Center for Molecular Medicine and Experimental and Clinical Research Center, Medical Faculty of the Charité, Berlin, Germany. 8HELIOS Klinikum Berlin-Brandenburg, Berlin, Germany. 9Institute of Biochemistry, Charité Campus Benjamin Franklin, Berlin, Germany. 10Department of Safety and Quality of Meat, Max Rubner-Institute, Kulmbach, Germany. 11Department of Molecular Cell Biology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands. 12Department of Pathology, Medical University Vienna, Vienna, Austria.

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | idw
Further information:
http://www.mdc-berlin.de/

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>