Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Life on Cheese – Scientists Explore the Cheese Rind Microbiome

09.05.2014

Bacteria and moulds are vital to the ripening and aroma of many cheeses.

Scientists from the Institute for Milk Hygiene, Milk Technology and Food Science at the University of Veterinary Medicine, Vienna are working to identify the microorganisms that live on the rind of Vorarlberger Bergkäse, an Austrian alpine cheese.


Scientists collegt cheese rind samples with a sharp knife.

Photo: Elisa Schornsteiner / Vetmeduni Vienna

Researchers found differences between young and aged cheeses, but also in samples from different cheese cellars. Environment and production techniques also influence cheese flora. The research results were published in the International Journal of Food Microbiology.

The rind is the boundary layer between a cheese and its environment. It hosts a variety of microorganisms that comprise the microbiome: a symbiotic community whose members perform different tasks. Some break down proteins and fats on the rind, for example, creating volatile sulphur and ammonia compounds that are responsible for the intensive odour of some types of cheese.

There are different curing methods for cheese. Some, like Limburger, Tilsiter and Appenzeller, need specific bacteria on their rinds. Others, like Camembert and Brie, develop their aroma with the assistance of moulds.

Vorarlberger Bergkäse - a model cheese

Vorarlberger Bergkäse is a regional speciality. Tons are produced every year, and similar varieties are made in the Tirol Alps and the Bavarian region of Allgäu. “In France, research into the microorganisms found on cheese is very advanced. Yet until now, the microbiome on Vorarlberger Bergkäse and other similar cheeses had hardly been investigated at all”, explains study director Stephan Schmitz-Esser.

Collecting cheese in the name of science

Microbiologist Schmitz-Esser and lead author Elisa Schornsteiner worked with colleagues from the Agricultural Chamber of Vorarlberg to gather samples from three different Vorarlberger cheese dairies. Schornsteiner collected 25 to 30 rind samples from cheese wheels at different curing stages from very young to well-aged. Then the scientists ran detailed genetic analyses on the rinds to identify the strains of bacteria and yeast living on them.

“Marine bacteria” with an unknown role discovered on rind

For the first time, these genetic analyses have revealed the entire spectrum of microorganisms that inhabit Vorarlberger Bergkäse. One find interested experts in particular: The Halomonas bacteria, a halophillic microbe probably originating from the sea, was the most common microorganism on the cheese and especially prevalent on young cheese rinds. Since the salt concentration on a cheese rind drops during the ripening process, researchers found older rinds hosted correspondingly fewer Halomonas. The exact role the microorganism plays in the cheese-making process is currently unknown and will be the subject of additional studies. The importance of the yeasts found on the cheese rinds is also still unclear and requires further investigation.

The microbiome’s role in cheese making

Microorganisms on cheese not only preserve the final product and make it aromatic and delicious; they are also very important for food safety. Many of the bacteria on the rind prevent the spread of potentially dangerous pathogens by excreting inhibitors against other bacteria, such as listeria. “Understanding exactly which microorganisms are on the rinds and the role each plays in the complex community is the subject of our research”, explains Schmitz-Esser. “This will allow us to help cheese dairies make safe, tasty cheeses”.

The article “Cultivation-independent analysis of microbial communities on Austrian raw milk hard cheese rinds” by Elisa Schornsteiner, Evelyne Mann, Othmar Bereuter, Martin Wagner and Stephan Schmitz-Esser was published in the International Journal of Food Microbiology. http://dx.doi.org/10.1016/j.ijfoodmicro.2014.04.010

About the University of Veterinary Medicine, Vienna

The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,200 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Dr. Stephan Schmitz-Esser
Institute of Milk Hygiene, Milk Technology and Food Science
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-3510
stephan.schmitz-esser@vetmeduni.ac.at

Released by:
Susanna Kautschitsch
Science Communication / Public Relations
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1153
susanna.kautschitsch@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/press-releases-2014/...

Dr. Susanna Kautschitsch | idw - Informationsdienst Wissenschaft

Further reports about: Food Life Medicine Microbiome Technology Veterinary analyses bacteria cheese identify microorganism microorganisms

More articles from Life Sciences:

nachricht A cell senses its own curves: New research from the MBL Whitman Center
29.04.2016 | Marine Biological Laboratory

nachricht A New Discovery in the Fight against Cancer: Tumor Cells Switch to a Different Mode
29.04.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Winds a quarter the speed of light spotted leaving mysterious binary systems

29.04.2016 | Physics and Astronomy

Fiber optic biosensor-integrated microfluidic chip to detect glucose levels

29.04.2016 | Health and Medicine

A cell senses its own curves: New research from the MBL Whitman Center

29.04.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>