Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Legumes give nitrogen-supplying bacteria special access pass

20.12.2011
A 125-year debate on how nitrogen-fixing bacteria are able to breach the cell walls of legumes has been settled. A paper to be published on Monday by John Innes Centre scientists reports that plants themselves allow bacteria in.

Once inside the right cells, these bacteria take nitrogen from the air and supply it to legumes in a form they can use, ammonia. Whether the bacteria breach the cell walls by producing enzymes that degrade it, or the plant does the work for them, has been contested since an 1887 paper in which the importance of the breach was first recognised.

"Our results are so clear we can unequivocally say that the plant supplies enzymes to break down its own cell walls and allow bacteria access," said Professor Allan Downie, lead author from the John Innes Centre, which is strategically funded by BBSRC.

The findings form part of research at JIC to fully understand the symbiosis that enables legumes to be the largest producers of natural nitrogen fertilizer in agriculture. Manufacturing nitrogen fertilisers for non-legume crops uses more fossil fuels than any other agricultural process. Once they have been applied, they release nitrous oxide, a greenhouse gas about 300 times more powerful than carbon dioxide.

Legumes bypass both problems via their symbiosis with rhizobial bacteria from soil. The ultimate aim is to enable non-legumes, and possibly even cereals such as wheat and rice, to develop the symbiosis and source their own nitrogen from the air like legumes.

"The fact that legumes themselves call the shots is a great finding but it also shows the complexity of the challenge to try to transfer the process to non-legumes," said Downie.

Plants give rhizobial bacteria a pass, but only allow a controlled invasion, not access all areas.

A plant cell wall is hard to penetrate, constructed from carbohydrates including pectin. It is like a room with no doors or windows. Rhizobial bacteria signal to the legume that they are there and the plant produces pectate lyase, an enzyme that breaks down pectin and allows rhizobia through one wall.

But this is not an open door for pathogenic bacteria and there are strict controls on entry.

The bacteria induce the plant to build a tunnel through to the next cell wall and the next until the bacteria reach the root where they will reside. As they grow along the tunnel and from wall to wall, they are not allowed beyond the tunnel's confines, ensuring the plant guards itself from them taking advantage. The tunnel also provides a barrier against rogue bacteria getting into plant cells disguised as rhizobia.

When the rhizobia reach the right type of cell, they are allowed to break out of the tunnel. The plant forms nodules on its roots to house the bacteria, from where they convert atmospheric nitrogen for the plant. The plant takes this essential nutrient to the leaves where it promotes growth and photosynthesis.

"There are two major challenges to understanding how plants promote nitrogen fixation," said Downie.

"Firstly, how does the plant make the nodules that contain cells to which the bacteria can be delivered, and secondly how do the bacteria get into these nodule cells?"

The findings published in PNAS contribute to understanding the latter.

"There will be many more hurdles to overcome, but our findings reveal a key step in the development of nitrogen fixation symbioses."

Contacts
JIC Press Office
Zoe Dunford, Tel: 01603-255111, email: zoe.dunford@nbi.ac.uk
Andrew Chapple, Tel: 01603-251490, email: andrew.chapple@nbi.ac.uk
Reference: Legume pectate lyase required for root infection by rhizobia DOI: www.pnas.org/cgi/doi/10.1073/pnas.1113992109

NOTES TO EDITORS

Funding

The work was supported by Grant E017045/1, a Grant-in-Aid from the Biotechnology and Biological Research Council, and the John Innes Foundation.

About the John Innes Centre:

The John Innes Centre, http://www.jic.ac.uk, is a world-leading research centre based on the Norwich Research Park http://www.nrp.org.uk. The JIC's mission is to generate knowledge of plants and microbes through innovative research, to train scientists for the future, and to apply its knowledge to benefit agriculture, human health and well-being, and the environment. JIC delivers world class bioscience outcomes leading to wealth and job creation, and generating high returns for the UK economy. JIC is one of eight institutes that receive strategic funding from the Biotechnology and Biological Sciences Research Council and received a total of £28.4M investment in 2010-11.

About BBSRC

BBSRC invests in world-class bioscience research and training on behalf of the UK public. Our aim is to further scientific knowledge to promote economic growth, wealth and job creation and to improve quality of life in the UK and beyond.

Funded by Government, and with an annual budget of around £445M, we support research and training in universities and strategically funded institutes. BBSRC research and the people we fund are helping society to meet major challenges, including food security, green energy and healthier, longer lives. Our investments underpin important UK economic sectors, such as farming, food, industrial biotechnology and pharmaceuticals.

For more information about BBSRC, our science and our impact see: http://www.bbsrc.ac.uk

For more information about BBSRC strategically funded institutes see: http://www.bbsrc.ac.uk/institutes

Zoe Dunford | EurekAlert!
Further information:
http://www.nbi.ac.uk

Further reports about: Biotechnology cell walls job creation nitrogen fixation plant cell

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>