Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leeds research points to new therapy for hepatitis C treatment

09.12.2008
Combination therapies similar to those used for HIV patients may be the best way of treating hepatitis C virus (HCV), say researchers from the University of Leeds.

A study of a protein called p7, has revealed that differences in the genetic coding of the protein between virus strains - known as genotypes - alter the sensitivity of the virus to drugs that block its function.

The p7 protein assists the spread of HCV around the body and is a promising target for new drug treatments for the virus. Its role was discovered in 2003 by Dr Steve Griffin with Professors Mark Harris and Dave Rowlands of the University’s Faculty of Biological Sciences. In laboratory tests their latest research shows that inhibiting p7 with drugs can prevent the spread of HCV.

“One of the challenges in finding treatments for viruses is their ability to constantly change their genetic makeup,” says Professor Harris. “Our research shows there can’t be a one-size-fits-all approach to treating HCV with p7 inhibitors in the future. We believe combination treatments will work much more efficiently, as they take into account the variability of the p7 protein.”

Approximately 180 million people worldwide are infected by HCV, which causes inflammation of the liver and can lead to liver failure or liver cancer. Spread by contact with infected blood or other bodily fluids, there is no vaccine against the disease which is largely asymptomatic in its early stages. The disease is currently treated with broad spectrum, non-specific anti-viral drugs.

Dr Griffin and Prof. Harris examined the response of HCV to a panel of compounds including the well known anti-viral drug, rimantadine, which targets a similar protein in the flu virus. They found that the drug’s effectiveness was altered depending on the genetic makeup of the p7 protein.

“We ‘borrowed’ rimantadine to test its effects because p7 behaves similarly to a protein found in the flu virus,” says Dr Griffin. “ Although rimantadine works well in the laboratory, we now need to develop new drugs specifically targeted against p7 that we can take forward for future therapies.”

Clare Elsley | alfa
Further information:
http://www.leeds.ac.uk

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>