Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leeds research points to new therapy for hepatitis C treatment

09.12.2008
Combination therapies similar to those used for HIV patients may be the best way of treating hepatitis C virus (HCV), say researchers from the University of Leeds.

A study of a protein called p7, has revealed that differences in the genetic coding of the protein between virus strains - known as genotypes - alter the sensitivity of the virus to drugs that block its function.

The p7 protein assists the spread of HCV around the body and is a promising target for new drug treatments for the virus. Its role was discovered in 2003 by Dr Steve Griffin with Professors Mark Harris and Dave Rowlands of the University’s Faculty of Biological Sciences. In laboratory tests their latest research shows that inhibiting p7 with drugs can prevent the spread of HCV.

“One of the challenges in finding treatments for viruses is their ability to constantly change their genetic makeup,” says Professor Harris. “Our research shows there can’t be a one-size-fits-all approach to treating HCV with p7 inhibitors in the future. We believe combination treatments will work much more efficiently, as they take into account the variability of the p7 protein.”

Approximately 180 million people worldwide are infected by HCV, which causes inflammation of the liver and can lead to liver failure or liver cancer. Spread by contact with infected blood or other bodily fluids, there is no vaccine against the disease which is largely asymptomatic in its early stages. The disease is currently treated with broad spectrum, non-specific anti-viral drugs.

Dr Griffin and Prof. Harris examined the response of HCV to a panel of compounds including the well known anti-viral drug, rimantadine, which targets a similar protein in the flu virus. They found that the drug’s effectiveness was altered depending on the genetic makeup of the p7 protein.

“We ‘borrowed’ rimantadine to test its effects because p7 behaves similarly to a protein found in the flu virus,” says Dr Griffin. “ Although rimantadine works well in the laboratory, we now need to develop new drugs specifically targeted against p7 that we can take forward for future therapies.”

Clare Elsley | alfa
Further information:
http://www.leeds.ac.uk

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>