Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Large reservoir of mitochondrial DNA mutations identified in humans

Researchers at the University of Newcastle, England, and the Virginia Bioinformatics Institute at Virginia Tech in the United States have revealed a large reservoir of mitochondrial DNA mutations present in the general population.

Clinical analysis of blood samples from almost 3,000 infants born in north Cumbria, England, showed that at least 1 in 200 individuals in the general public harbor mitochondrial DNA mutations that may lead to disease. The findings, which highlight the need to develop new approaches to prevent the transmission of mitochondrial diseases, were published in The American Journal of Human Genetics.*

Mitochondria, the "engines" present in each cell that produce adenosine triphosphate, are passed from mother to offspring. Mutations in mitochondrial DNA inherited from the mother may cause mitochondrial diseases that include muscle weakness, diabetes, stroke, heart failure, or epilepsy. In almost all mitochondrial diseases caused by mutant mitochondrial DNA, the patient's cells will contain a mixture of mutant and normal mitochondrial DNA. The proportion of mutant mitochondrial DNA in most cases determines the severity of disease.

Previous estimates from epidemiological studies suggested that mitochondrial diseases affect as many as one person in 5,000. However, the incidence of new mitochondrial mutations and the prevalence of those carrying these mutations were never fully established due to limitations in the methods used. Most of the earlier estimates of the frequency of mitochondrial DNA mutations in the general population, for example, have depended on identification of clinically affected patients and subsequent retracing of inheritance on the maternal side of the family. This approach fails to detect the gradual accumulation of mutations in some members of the population, including those individuals who harbor mitochondrial DNA mutations but who otherwise do not show the symptoms of disease.

Dr. David Samuels, Assistant Professor at the Virginia Bioinformatics Institute and an author on this study, commented: "We know from many clinical studies of patients and their families that our cells can tolerate a rather large amount of mutant mitochondrial DNA with no significant loss of function. From that observation we have suspected that there may be a large number of people in the general population who carry pathogenic mitochondrial DNA mutations, but who are not obviously ill with a mitochondrial disease. This study gives us, for the first time, a measurement of the number of these carriers of pathogenic mitochondrial DNA mutations in the general population. One in every 200 individuals is a lot of people – around 1.5 million people in the United States alone. "

The scientists looked at 10 mitochondrial DNA mutations (arising from single nucleotide replacements) often found in patients with mitochondrial disease. By taking advantage of a high-throughput genotyping system that uses mass spectrometry measurements, the researchers were able to detect mutated mitochondrial DNA at high sensitivity. In each positive case, DNA cloning and sequencing were used to confirm the findings. By looking at differences in tissue samples from mother and child, the researchers were also able to estimate the rate at which new DNA mutations had arisen in the population. The incidence of new mutations was close to 100 for every 100, 000 live births.

Dr. Samuels commented: "These new clinical measurements have given direct evidence for the widespread incidence of pathogenic mitochondrial DNA mutations in the human population. These findings emphasize the pressing need to develop effective ways to interrupt the transmission of these mutations to the next generation."

Barry Whyte | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>