Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Killing drug-resistant melanoma requires combination therapy

14.12.2010
When the best therapies fail, drug combos offer new hope

This past summer saw a revolution in melanoma therapy. Patients whose melanoma lesions contain a mutation in the BRAF gene were successfully treated with a BRAF-specific inhibitor, PLX4032.

Reports of the drug trial described shrinking tumors and improved health. Yet seven months after therapy began the tumors returned and resumed growing. Now, scientists at The Wistar Institute explain why: the tumor learns to signal around the blocked gene by adjusting its molecular wiring. They also show how to overcome resistance by simultaneously targeting multiple signaling pathways.

The researchers see this as further evidence that some cancers must be treated with multiple targeted drugs at the outset of treatment. Their findings are published in the December 14 issue of the journal Cancer Cell.

"The evidence suggests that targeting mutant BRAF can kill cancer cells, but it is not enough by itself to finish off melanoma," said Meenhard Herlyn, D.V.M., D.Sc., director of The Wistar Institute Melanoma Research Center and leader of Wistar's Molecular and Cellular Oncogenesis program. "The good news is that drugs are being developed to work in combination with BRAF inhibitors, which our data clearly shows is our best option if we intend to beat advanced melanoma."

Melanoma is the deadliest, most aggressive form of skin cancer. While surgical treatment of early melanoma leads to 90 percent cure rates, advanced melanoma is notoriously resistant to chemotherapy and has a tendency to metastasize, or spread, throughout the body. According to the World Health Organization, cases of the disease continue to rise, which has helped spur research into therapies such as BRAF inhibitors.

To study how melanoma responds to BRAF inhibitors, the Herlyn lab took melanoma cells with the BRAF mutation and tested them against a variety of anti-mutant BRAF drugs. When exposed to the drugs, the cells died off dramatically only to grow back again. In fact, cells that became resistant to one type of BRAF drug became resistant to all of them, which suggests that the cells were biochemically "rewired" in such a way that they no longer needed BRAF to form tumors.

"Cells are complex machines that work, essentially, through chains of biochemical reactions that we refer to as signaling pathways," said Jessie Villanueva, Ph.D., senior author on the study and staff scientist in the Herlyn laboratory.

"Knocking out mutant BRAF shuts a major pathway down, but if some cells can use an alternate pathway, then they can survive."

To find out which alternate pathways the drug-resistant cells use, Villanueva and her colleagues looked for signs of increased activation among proteins along the pathways BRAF uses, as well as other pathways.

Their hunt turned up two paths that worked together to aid survival. First, they found that resistant cells used a protein similar to BRAF to carry the signal down the chain. Second, they found these cells received an additional boost from the IGF-1 receptor, a protein that sits on the surface of cells and sends signals that prevent cells from being killed. The resistant cells re-route the signal around BRAF by switching to an alternate protein (CRAF or ARAF), which promotes tumor cell growth, while IGF-1R signaling promotes survival of the resistant cells.

Fortunately, there are a number compounds in clinical development that could block signals along both these pathways. So-called MEK inhibitors target a protein along the same pathway as BRAF, and IGF-1 receptor inhibitors (and inhibitors of P13K, a protein that can be activated by the IGF-1 receptor pathway) block the cancer-enabling survival signal. To test these drug combinations in the BRAF-inhibitor resistant cells, the Herlyn laboratory used a tool they developed to simulate the real-world environment of human cells: 3-D melanoma tumor spheroids. Their 3-D tissue cultures allow melanoma cells to grow in all directions, much like a new melanoma tumor would grow after metastasis. As predicted, a combination of these two inhibitors killed BRAF-resistant melanoma cells in the Wistar 3-D model.

Moreover, the Herlyn laboratory confirmed in tissue samples from patients in the PLX4032 trial—taken both before treatment and after they developed resistance—that an increased expression of the IGF-1 receptor is associated with resistance to BRAF inhibitors. None of the laboratory-generated cell lines or the post-relapse patient's tumor samples analyzed had new mutations in the BRAF, NRAS, or c-Kit genes.

Additionally, the researchers noted an association between the loss of a tumor suppressor called PTEN, and resistance to BRAF inhibitors in melanoma cell lines. The scientists found that the relapsed tumor of one patient included in the study lost the PTEN gene, even though it was present before treatment. These findings suggest that loss of PTEN could be an additional way that melanoma cells gain resistance to BRAF inhibitors. The Wistar group continues to investigate these and other mechanisms of resistance, as they expect that several will likely arise given the heterogeneous nature of melanoma.

"Tumors are efficient engines of evolution—they are going to find a way around most treatments, so we want to kill all the malignant cells from the very beginning," said Villanueva. "By targeting both pathways simultaneously you hit these cells with two punches from which they cannot recover."

"If you do this at the outset of treatment, we reason, it will prevent melanoma survival and hopefully improve patient outcomes," Villanueva added.

Support for this study was provided by grants from the National Cancer Institute and the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation.

Wistar co-authors in this study include Adina Vultur, Ph.D.; John T. Lee, Ph.D.; Rajasekharan Somasundaram, Ph.D.; Mizuho Fukunaga-Kalabis, M.D., Ph.D.; Angela K. Cipolla; James E. Hayden; and Ademi E. Santiago-Walker, Ph.D. University of Pennsylvania School of Medicine co-authors include Katherine L. Nathanson, M.D.; Xiaowei Xu, M.D., Ph.D.; Phyllis A. Gimotty, Ph.D.; Bradley Wubbenhorst; Richard Letrero; Kurt D'Andrea; and Anitha Pushparajan. Other authors included Grant A. McArthur, M.B., B.S., Ph.D.; and Damien Kee, MBBS, FRACP, of the Peter MacCallum Cancer Centre in Victoria, Australia; Jeffrey A. Sosman, M.D., and Kimberly Dahlman Brown of the Vanderbilt University Medical Center; and Sylvie Laquerre, Ph.D., of GlaxoSmithKline's division of Oncology Biology in Collegeville, Pa.

Greg Lester | EurekAlert!
Further information:
http://www.wistar.org

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>