Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Killer Catfish? Venomous Species Surprisingly Common

14.12.2009
Name all the venomous animals you can think of and you probably come up with snakes, spiders, bees, wasps and perhaps poisonous frogs. But catfish?

A new study by University of Michigan graduate student Jeremy Wright finds that at least 1,250 and possibly more than 1,600 species of catfish may be venomous---far more than previously believed. The research is described in a paper published online Dec. 4 in the open access journal BMC Evolutionary Biology.

Lest anyone have concerns about attacks of killer catfish, rest assured that, at least in North America, these finned fatales use their venom mainly to defend themselves against predatory fish, though they can inflict a painful sting that many fishermen have suffered. In other parts of the world, some catfish do have extremely toxic venoms that can be deadly to humans.

Scientists have focused a great deal of attention of venom produced by snakes and spiders, but venomous fish had been largely neglected, said Wright, who used histological and toxicological techniques, as well as previous studies of evolutionary relationships among catfish species, to catalog the presence of venom glands and investigate their biological effects.

Catfish venom glands are found alongside sharp, bony spines on the edges of the dorsal and pectoral fins, and these spines can be locked into place when the catfish is threatened. When a spine jabs a potential predator, the membrane surrounding the venom gland cells is torn, releasing venom into the wound. In his paper, Wright describes how catfish venoms poison nerves and break down red blood cells, producing such effects as severe pain, reduced blood flow, muscle spasms and respiratory distress. However, because none of the species he examined produces more than three distinct toxins in its venom, each species probably displays only a subset of the whole repertoire of effects.

The main dangers to humans who tangle with North American catfish come not from the initial sting and inflammation, but from secondary bacterial and fungal infections that can be introduced through the puncture wound or when pieces of the spine and other tissue break off in the wound, Wright said. "In such cases, complications associated with these infections and foreign bodies can last several months."

On the evolutionary side, Wright's analyses point to at least two independent origins of catfish venom glands. In addition, the toxic proteins show strong similarities with, and might be derived from, previously characterized toxins found in catfish skin secretions.

Those toxins in catfish skin secretions have been shown to accelerate wound healing in humans, so it's possible that the proteins from their venom glands could have similar properties. Probably not very likely, given the known effects of these venoms on humans, but perhaps worth investigating, Wright said.

"I'm currently working to isolate particular toxins and determine their chemical structures and the genes responsible for their production," he said. "It's a very poorly-studied area, with little in the way of scientific literature to draw on, and my studies are just getting off the ground. So at this point it remains to be seen whether they'll have any therapeutic value, though it's worth pointing out that toxins from the venoms of other organisms---snakes, cone snails and scorpions, for example---have all been put to pharmaceutical and therapeutic use."

Further examination of the chemical composition of the venoms also will provide valuable insight into the mechanisms and potential selective factors driving venom evolution in fishes, Wright said.

Wright received financial support from the U-M Museum of Zoology and the U-M Rackham Graduate School.

More information:
Jeremy Wright: http://www.eeb.lsa.umich.edu/eeb/people/grads/jjwright.html
BMC Evolutionary Biology: http://www.biomedcentral.com/bmcevolbiol/

Nancy Ross-Flanigan | Newswise Science News
Further information:
http://umich.edu/news/index.html?Releases/2009/Dec09/venom

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>