Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Killer Catfish? Venomous Species Surprisingly Common

14.12.2009
Name all the venomous animals you can think of and you probably come up with snakes, spiders, bees, wasps and perhaps poisonous frogs. But catfish?

A new study by University of Michigan graduate student Jeremy Wright finds that at least 1,250 and possibly more than 1,600 species of catfish may be venomous---far more than previously believed. The research is described in a paper published online Dec. 4 in the open access journal BMC Evolutionary Biology.

Lest anyone have concerns about attacks of killer catfish, rest assured that, at least in North America, these finned fatales use their venom mainly to defend themselves against predatory fish, though they can inflict a painful sting that many fishermen have suffered. In other parts of the world, some catfish do have extremely toxic venoms that can be deadly to humans.

Scientists have focused a great deal of attention of venom produced by snakes and spiders, but venomous fish had been largely neglected, said Wright, who used histological and toxicological techniques, as well as previous studies of evolutionary relationships among catfish species, to catalog the presence of venom glands and investigate their biological effects.

Catfish venom glands are found alongside sharp, bony spines on the edges of the dorsal and pectoral fins, and these spines can be locked into place when the catfish is threatened. When a spine jabs a potential predator, the membrane surrounding the venom gland cells is torn, releasing venom into the wound. In his paper, Wright describes how catfish venoms poison nerves and break down red blood cells, producing such effects as severe pain, reduced blood flow, muscle spasms and respiratory distress. However, because none of the species he examined produces more than three distinct toxins in its venom, each species probably displays only a subset of the whole repertoire of effects.

The main dangers to humans who tangle with North American catfish come not from the initial sting and inflammation, but from secondary bacterial and fungal infections that can be introduced through the puncture wound or when pieces of the spine and other tissue break off in the wound, Wright said. "In such cases, complications associated with these infections and foreign bodies can last several months."

On the evolutionary side, Wright's analyses point to at least two independent origins of catfish venom glands. In addition, the toxic proteins show strong similarities with, and might be derived from, previously characterized toxins found in catfish skin secretions.

Those toxins in catfish skin secretions have been shown to accelerate wound healing in humans, so it's possible that the proteins from their venom glands could have similar properties. Probably not very likely, given the known effects of these venoms on humans, but perhaps worth investigating, Wright said.

"I'm currently working to isolate particular toxins and determine their chemical structures and the genes responsible for their production," he said. "It's a very poorly-studied area, with little in the way of scientific literature to draw on, and my studies are just getting off the ground. So at this point it remains to be seen whether they'll have any therapeutic value, though it's worth pointing out that toxins from the venoms of other organisms---snakes, cone snails and scorpions, for example---have all been put to pharmaceutical and therapeutic use."

Further examination of the chemical composition of the venoms also will provide valuable insight into the mechanisms and potential selective factors driving venom evolution in fishes, Wright said.

Wright received financial support from the U-M Museum of Zoology and the U-M Rackham Graduate School.

More information:
Jeremy Wright: http://www.eeb.lsa.umich.edu/eeb/people/grads/jjwright.html
BMC Evolutionary Biology: http://www.biomedcentral.com/bmcevolbiol/

Nancy Ross-Flanigan | Newswise Science News
Further information:
http://umich.edu/news/index.html?Releases/2009/Dec09/venom

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>