Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Killer Catfish? Venomous Species Surprisingly Common

14.12.2009
Name all the venomous animals you can think of and you probably come up with snakes, spiders, bees, wasps and perhaps poisonous frogs. But catfish?

A new study by University of Michigan graduate student Jeremy Wright finds that at least 1,250 and possibly more than 1,600 species of catfish may be venomous---far more than previously believed. The research is described in a paper published online Dec. 4 in the open access journal BMC Evolutionary Biology.

Lest anyone have concerns about attacks of killer catfish, rest assured that, at least in North America, these finned fatales use their venom mainly to defend themselves against predatory fish, though they can inflict a painful sting that many fishermen have suffered. In other parts of the world, some catfish do have extremely toxic venoms that can be deadly to humans.

Scientists have focused a great deal of attention of venom produced by snakes and spiders, but venomous fish had been largely neglected, said Wright, who used histological and toxicological techniques, as well as previous studies of evolutionary relationships among catfish species, to catalog the presence of venom glands and investigate their biological effects.

Catfish venom glands are found alongside sharp, bony spines on the edges of the dorsal and pectoral fins, and these spines can be locked into place when the catfish is threatened. When a spine jabs a potential predator, the membrane surrounding the venom gland cells is torn, releasing venom into the wound. In his paper, Wright describes how catfish venoms poison nerves and break down red blood cells, producing such effects as severe pain, reduced blood flow, muscle spasms and respiratory distress. However, because none of the species he examined produces more than three distinct toxins in its venom, each species probably displays only a subset of the whole repertoire of effects.

The main dangers to humans who tangle with North American catfish come not from the initial sting and inflammation, but from secondary bacterial and fungal infections that can be introduced through the puncture wound or when pieces of the spine and other tissue break off in the wound, Wright said. "In such cases, complications associated with these infections and foreign bodies can last several months."

On the evolutionary side, Wright's analyses point to at least two independent origins of catfish venom glands. In addition, the toxic proteins show strong similarities with, and might be derived from, previously characterized toxins found in catfish skin secretions.

Those toxins in catfish skin secretions have been shown to accelerate wound healing in humans, so it's possible that the proteins from their venom glands could have similar properties. Probably not very likely, given the known effects of these venoms on humans, but perhaps worth investigating, Wright said.

"I'm currently working to isolate particular toxins and determine their chemical structures and the genes responsible for their production," he said. "It's a very poorly-studied area, with little in the way of scientific literature to draw on, and my studies are just getting off the ground. So at this point it remains to be seen whether they'll have any therapeutic value, though it's worth pointing out that toxins from the venoms of other organisms---snakes, cone snails and scorpions, for example---have all been put to pharmaceutical and therapeutic use."

Further examination of the chemical composition of the venoms also will provide valuable insight into the mechanisms and potential selective factors driving venom evolution in fishes, Wright said.

Wright received financial support from the U-M Museum of Zoology and the U-M Rackham Graduate School.

More information:
Jeremy Wright: http://www.eeb.lsa.umich.edu/eeb/people/grads/jjwright.html
BMC Evolutionary Biology: http://www.biomedcentral.com/bmcevolbiol/

Nancy Ross-Flanigan | Newswise Science News
Further information:
http://umich.edu/news/index.html?Releases/2009/Dec09/venom

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>