Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kidneys at risk

10.05.2010
A large-scale genetic study reveals a novel risk factor for a potentially fatal kidney disorder associated with diabetes

It is estimated that nearly a third of all diabetic patients may be at risk for diabetic nephropathy, a renal disorder that progresses slowly but can inflict severe and irreversible kidney damage.

“In Japan, more than 16,000 patients with diabetic nephropathy enter dialysis therapy per year, and these individuals account for 43% of all new [Japanese] cases requiring renal replacement therapy,” explains Shiro Maeda of the RIKEN Center for Genomic Medicine in Yokohama.

There is considerable evidence suggesting the existence of genetic risk factors for diabetic nephropathy, but efforts to directly identify candidate genes have been undermined by limited understanding of disease pathology. In such situations, genome-wide association studies, in which large populations are subjected to genetic analysis in order to identify single-nucleotide genomic variants potentially ‘linked’ to a condition of interest, offer a powerful alternative for disease gene discovery.

Maeda’s group recently launched such a study in partnership with a team of researchers from around the world, and their data have fingered a single nucleotide change in the gene encoding the enzyme acetyl-coenzyme A carboxylase beta (ACACB) as a significant risk factor for diabetic nephropathy among both Japanese and European populations1. This genetic variation was located within a non-protein-coding, regulatory segment of the gene, and appears to boost expression levels relative to the standard ACACB variant.

Strikingly, although type I and type II diabetes patients are both at risk for diabetic nephropathy, the polymorphism identified by Maeda and colleagues only showed significant association for patients with type II diabetes, which arises when individuals acquire resistance to the hormone insulin. “I think our report is the first to provide evidence suggesting the existence of diabetic nephropathy genes specific to patients with type 2 diabetes,” Maeda says. “However, this finding should be evaluated further.”

The gene ACACB is involved in the metabolism of fatty acids, which is in keeping with previous findings that have linked defects in this process with kidney disease. Nevertheless, as the first genetic factor to be explicitly linked to diabetic nephropathy, Maeda points out that considerably more research will be required to clarify the pathological role of ACACB and to uncover other potential accomplices.

“We will examine possible mechanisms by which ACACB contributes to development and progression of diabetic nephropathy using cultured human kidney cells or genetically engineered mice,” he says, “and we are also performing a larger-scale genome-wide association study to identify additional susceptibility genes.”

The corresponding author for this highlight is based at the Laboratory for Endocrinology and Metabolism, RIKEN Center for Genomic Medicine

Journal information

1. Maeda, S., Kobayashi, M., Araki, S., Babazono, T., Freedman, B.I., Bostrom, M.A., Cooke, J.N., Toyoda, M., Umezono, T., Tarnow, L. et al. A single nucleotide polymorphism within the acetyl-coenzyme A carboxylase beta gene is associated with proteinuria in patients with type 2 diabetes. PLoS Genetics 6, e1000842 (2010)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6257
http://www.researchsea.com

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

New research identifies how 3-D printed metals can be both strong and ductile

11.12.2017 | Physics and Astronomy

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017 | Materials Sciences

What makes corals sick?

11.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>