Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kidneys at risk

10.05.2010
A large-scale genetic study reveals a novel risk factor for a potentially fatal kidney disorder associated with diabetes

It is estimated that nearly a third of all diabetic patients may be at risk for diabetic nephropathy, a renal disorder that progresses slowly but can inflict severe and irreversible kidney damage.

“In Japan, more than 16,000 patients with diabetic nephropathy enter dialysis therapy per year, and these individuals account for 43% of all new [Japanese] cases requiring renal replacement therapy,” explains Shiro Maeda of the RIKEN Center for Genomic Medicine in Yokohama.

There is considerable evidence suggesting the existence of genetic risk factors for diabetic nephropathy, but efforts to directly identify candidate genes have been undermined by limited understanding of disease pathology. In such situations, genome-wide association studies, in which large populations are subjected to genetic analysis in order to identify single-nucleotide genomic variants potentially ‘linked’ to a condition of interest, offer a powerful alternative for disease gene discovery.

Maeda’s group recently launched such a study in partnership with a team of researchers from around the world, and their data have fingered a single nucleotide change in the gene encoding the enzyme acetyl-coenzyme A carboxylase beta (ACACB) as a significant risk factor for diabetic nephropathy among both Japanese and European populations1. This genetic variation was located within a non-protein-coding, regulatory segment of the gene, and appears to boost expression levels relative to the standard ACACB variant.

Strikingly, although type I and type II diabetes patients are both at risk for diabetic nephropathy, the polymorphism identified by Maeda and colleagues only showed significant association for patients with type II diabetes, which arises when individuals acquire resistance to the hormone insulin. “I think our report is the first to provide evidence suggesting the existence of diabetic nephropathy genes specific to patients with type 2 diabetes,” Maeda says. “However, this finding should be evaluated further.”

The gene ACACB is involved in the metabolism of fatty acids, which is in keeping with previous findings that have linked defects in this process with kidney disease. Nevertheless, as the first genetic factor to be explicitly linked to diabetic nephropathy, Maeda points out that considerably more research will be required to clarify the pathological role of ACACB and to uncover other potential accomplices.

“We will examine possible mechanisms by which ACACB contributes to development and progression of diabetic nephropathy using cultured human kidney cells or genetically engineered mice,” he says, “and we are also performing a larger-scale genome-wide association study to identify additional susceptibility genes.”

The corresponding author for this highlight is based at the Laboratory for Endocrinology and Metabolism, RIKEN Center for Genomic Medicine

Journal information

1. Maeda, S., Kobayashi, M., Araki, S., Babazono, T., Freedman, B.I., Bostrom, M.A., Cooke, J.N., Toyoda, M., Umezono, T., Tarnow, L. et al. A single nucleotide polymorphism within the acetyl-coenzyme A carboxylase beta gene is associated with proteinuria in patients with type 2 diabetes. PLoS Genetics 6, e1000842 (2010)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6257
http://www.researchsea.com

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>