Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Key mechanism behind cancer spread is explained

Scientists have discovered the two key processes that allow cancer cells to change the way they move in order to spread through the body, reports leading scientific journal ‘Cell’ (1).

The progression of cancer cells from one part of the body to another (“metastasis”) is one of the biggest problems in curing cancer, therefore this research brings new hope of future therapies to fight cancer. The discovery has been made by Dr Victoria Sanz-Moreno in the research team led by Professor Chris Marshall at The Institute of Cancer Research, in work funded by Cancer Research UK.

Professor Marshall says:

“The spreading of cancer cells from one part of the body to another, called metastasis, is one of the biggest causes of death from cancer. By explaining a key part of that process, our research brings new hope for future therapies to fight cancer.

“The research has found the constant competition between two proteins called ‘Rac’ and ‘Rho’ is responsible for allowing the cancer cells to change shape and spread through the body.

“We have shown that cells from melanoma (an aggressive type of skin cancer) are able to rapidly alternate between two different forms of movement where cells have either a round shape or a more stretchy “elongated” shape.

“Together with Dr Erik Sahai and Dr Sophie Pinner at the Cancer Research UK London Research Institute we have been able to see cells in live tumours carrying out these different forms of movement. These alternate shapes and ways of moving may enable tumour cells to deal with different situations during cancer spread. For example, tests indicated that a round shaped tumour cell may have more durability to survive in our bloodstream than elongated shaped tumour cells.”

The Rac process involves a protein called NEDD9, (which has previously been shown to be involved in melanoma metastasis) activating Rac through another protein called DOCK3. This Rac activity serves a dual purpose, both encouraging the cell to become elongated and simultaneously suppressing the competing Rho activity. Conversely, when cells adopt the round form a protein activated by Rho, called ARHGAP22, switches off Rac activation.

Dr Victoria Sanz-Moreno says: “Until now the conversion between different types of movement of individual cancer cells had been observed but the key players had not been identified. We are excited to discover that the amount and the activity of these proteins in the tumour cell regulates its shape and the mechanism for it to move and invade surrounding tissue. We hope these insights can be used to help develop future therapies”.

Dr Lesley Walker, Cancer Research UK director of cancer information, said: "Successful treatment tends to be much more difficult if the cancer has spread. This exciting study has shed light on some of the key molecules involved in the signalling pathways that encourage cells to move around the body. Knowing more about how cancer spreads will hopefully lead to the identification of new drug targets which will enable scientists to develop anti-cancer drugs to block these pathways."

Melanoma cells were being studied in this research and their behaviour is also expected to occur in many other types of cancer. Melanomas are a major target for cancer therapies because although they are the least common, they are the most serious type of skin cancer. There are about 160,000 new cases of melanoma worldwide each year, including the rarer types that affect the bowel or eye rather than the skin (2).

(1) "Rac activation and inactivation control plasticity of tumor cell movement". Copies of this paper in Cell are available upon request. It will appear in the print issue of Cell on 31 October 2008.

(2) Ries LAG, et al, eds. SEER Cancer Statistics Review, 1975-2000. Bethesda, MD: National Cancer Institute; 2003: Tables XVI-1-9.

Cathy Beveridge | alfa
Further information:

Further reports about: Cancer Cell Key Rac anti-cancer drugs cancer cells key molecules melanoma metastasis proteins skin cancer spread tumour tumour cells

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>