Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key mechanism behind cancer spread is explained

31.10.2008
Scientists have discovered the two key processes that allow cancer cells to change the way they move in order to spread through the body, reports leading scientific journal ‘Cell’ (1).

The progression of cancer cells from one part of the body to another (“metastasis”) is one of the biggest problems in curing cancer, therefore this research brings new hope of future therapies to fight cancer. The discovery has been made by Dr Victoria Sanz-Moreno in the research team led by Professor Chris Marshall at The Institute of Cancer Research, in work funded by Cancer Research UK.

Professor Marshall says:

“The spreading of cancer cells from one part of the body to another, called metastasis, is one of the biggest causes of death from cancer. By explaining a key part of that process, our research brings new hope for future therapies to fight cancer.

“The research has found the constant competition between two proteins called ‘Rac’ and ‘Rho’ is responsible for allowing the cancer cells to change shape and spread through the body.

“We have shown that cells from melanoma (an aggressive type of skin cancer) are able to rapidly alternate between two different forms of movement where cells have either a round shape or a more stretchy “elongated” shape.

“Together with Dr Erik Sahai and Dr Sophie Pinner at the Cancer Research UK London Research Institute we have been able to see cells in live tumours carrying out these different forms of movement. These alternate shapes and ways of moving may enable tumour cells to deal with different situations during cancer spread. For example, tests indicated that a round shaped tumour cell may have more durability to survive in our bloodstream than elongated shaped tumour cells.”

The Rac process involves a protein called NEDD9, (which has previously been shown to be involved in melanoma metastasis) activating Rac through another protein called DOCK3. This Rac activity serves a dual purpose, both encouraging the cell to become elongated and simultaneously suppressing the competing Rho activity. Conversely, when cells adopt the round form a protein activated by Rho, called ARHGAP22, switches off Rac activation.

Dr Victoria Sanz-Moreno says: “Until now the conversion between different types of movement of individual cancer cells had been observed but the key players had not been identified. We are excited to discover that the amount and the activity of these proteins in the tumour cell regulates its shape and the mechanism for it to move and invade surrounding tissue. We hope these insights can be used to help develop future therapies”.

Dr Lesley Walker, Cancer Research UK director of cancer information, said: "Successful treatment tends to be much more difficult if the cancer has spread. This exciting study has shed light on some of the key molecules involved in the signalling pathways that encourage cells to move around the body. Knowing more about how cancer spreads will hopefully lead to the identification of new drug targets which will enable scientists to develop anti-cancer drugs to block these pathways."

Melanoma cells were being studied in this research and their behaviour is also expected to occur in many other types of cancer. Melanomas are a major target for cancer therapies because although they are the least common, they are the most serious type of skin cancer. There are about 160,000 new cases of melanoma worldwide each year, including the rarer types that affect the bowel or eye rather than the skin (2).

(1) "Rac activation and inactivation control plasticity of tumor cell movement". Copies of this paper in Cell are available upon request. It will appear in the print issue of Cell on 31 October 2008.

(2) Ries LAG, et al, eds. SEER Cancer Statistics Review, 1975-2000. Bethesda, MD: National Cancer Institute; 2003: Tables XVI-1-9.

Cathy Beveridge | alfa
Further information:
http://www.icr.ac.uk

Further reports about: Cancer Cell Key Rac anti-cancer drugs cancer cells key molecules melanoma metastasis proteins skin cancer spread tumour tumour cells

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>