Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Key that Fits

05.03.2010
New Technique To Trace Disease-Related Agents

In the development of new drugs, photoaffinity labels (PALs) are a versatile tool to investigate the interaction between a receptor and a drug or a ligand. Researchers working with Stephanie Grond at the University of Tübingen and Paultheo von Zezschwitz at the University of Marburg have now developed a new class of PALs that can be attached to the ligand in a single step, thus causing less modification of its structure, as they report in the European Journal of Organic Chemistry. The group has tested the new labels on an enzyme that is linked to osteoporosis and cancer.

When PALs are used to study a specific ligand, the ligand is firstly decorated with a chemical group that can be activated when exposed to ultraviolet light, whereupon it irreversibly binds to the receptor to form a stable complex. This complex can then be thoroughly studied, e.g., by fragmentation of the receptor. Typically, formation and fragmentation of the ligand–receptor complex is traced by monitoring special tags that are incorporated into the complex. However, these tags are problematic due to high costs and size restrictions, and frequently, the tagged fragments cannot be detected among the vast excess of untagged fragments. Therefore, any potential to study the complexes is lost. Finding new ways to separate the tagged fragments from the untagged ones is one of the major challenges facing scientists today.

Grond and von Zezschwitz, together with the help of their biology colleagues Markus Huss and Helmut Wieczorek at the University of Osnabrück, have been studying V-ATPase, which is an enzyme that has been linked to osteoporosis and some cancers, to determine its mode of inhibition. To do so, they have developed a new fluorous photoaffinity label (F-PAL) that can be attached to the ligand in one step, as both the activator and the tag are contained within the same compound. The F-PAL contains a long carbon chain that is fully substituted with fluorine atoms instead of the usual hydrogen atoms. By using a special separation technique that is specific to fluorine-containing compounds, compounds with a high fluorine content can be easily “fished out” from untagged compounds. Once the tagged fragments of the ligand–receptor complexes are isolated, they can be analyzed to unravel the exact function of the drug, which could give scientists some valuable insight into how diseases such as osteoporosis and cancer can be fought.

Author: Stephanie Grond, Eberhard-Karls-Universität Tübingen (Germany), http://www.grond.chemie.uni-goettingen.de/

Title: New Fluorous Photoaffinity Labels (F-PAL) and Their Application in V-ATPase Inhibition Studies

European Journal of Organic Chemistry, Permalink: http://dx.doi.org/10.1002/ejoc.200901463

Stephanie Grond | European Journal of Organic Chem
Further information:
http://www.grond.chemie.uni-goettingen.de/
http://www.eurjoc.org

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>