Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Key that Fits

05.03.2010
New Technique To Trace Disease-Related Agents

In the development of new drugs, photoaffinity labels (PALs) are a versatile tool to investigate the interaction between a receptor and a drug or a ligand. Researchers working with Stephanie Grond at the University of Tübingen and Paultheo von Zezschwitz at the University of Marburg have now developed a new class of PALs that can be attached to the ligand in a single step, thus causing less modification of its structure, as they report in the European Journal of Organic Chemistry. The group has tested the new labels on an enzyme that is linked to osteoporosis and cancer.

When PALs are used to study a specific ligand, the ligand is firstly decorated with a chemical group that can be activated when exposed to ultraviolet light, whereupon it irreversibly binds to the receptor to form a stable complex. This complex can then be thoroughly studied, e.g., by fragmentation of the receptor. Typically, formation and fragmentation of the ligand–receptor complex is traced by monitoring special tags that are incorporated into the complex. However, these tags are problematic due to high costs and size restrictions, and frequently, the tagged fragments cannot be detected among the vast excess of untagged fragments. Therefore, any potential to study the complexes is lost. Finding new ways to separate the tagged fragments from the untagged ones is one of the major challenges facing scientists today.

Grond and von Zezschwitz, together with the help of their biology colleagues Markus Huss and Helmut Wieczorek at the University of Osnabrück, have been studying V-ATPase, which is an enzyme that has been linked to osteoporosis and some cancers, to determine its mode of inhibition. To do so, they have developed a new fluorous photoaffinity label (F-PAL) that can be attached to the ligand in one step, as both the activator and the tag are contained within the same compound. The F-PAL contains a long carbon chain that is fully substituted with fluorine atoms instead of the usual hydrogen atoms. By using a special separation technique that is specific to fluorine-containing compounds, compounds with a high fluorine content can be easily “fished out” from untagged compounds. Once the tagged fragments of the ligand–receptor complexes are isolated, they can be analyzed to unravel the exact function of the drug, which could give scientists some valuable insight into how diseases such as osteoporosis and cancer can be fought.

Author: Stephanie Grond, Eberhard-Karls-Universität Tübingen (Germany), http://www.grond.chemie.uni-goettingen.de/

Title: New Fluorous Photoaffinity Labels (F-PAL) and Their Application in V-ATPase Inhibition Studies

European Journal of Organic Chemistry, Permalink: http://dx.doi.org/10.1002/ejoc.200901463

Stephanie Grond | European Journal of Organic Chem
Further information:
http://www.grond.chemie.uni-goettingen.de/
http://www.eurjoc.org

More articles from Life Sciences:

nachricht New type of photosynthesis discovered
17.06.2018 | Imperial College London

nachricht New ID pictures of conducting polymers discover a surprise ABBA fan
17.06.2018 | University of Warwick

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>