Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keeping stem cells pluripotent

14.01.2014
By blocking key signal, researchers maintain embryonic stem cells in vital, undifferentiated state

While the ability of human embryonic stem cells (hESCs) to become any type of mature cell, from neuron to heart to skin and bone, is indisputably crucial to human development, no less important is the mechanism needed to maintain hESCs in their pluripotent state until such change is required.

In a paper published in this week's Online Early Edition of PNAS, researchers from the University of California, San Diego School of Medicine identify a key gene receptor and signaling pathway essential to doing just that – maintaining hESCs in an undifferentiated state.

The finding sheds new light upon the fundamental biology of hESCs – with their huge potential as a diverse therapeutic tool – but also suggests a new target for attacking cancer stem cells, which likely rely upon the same receptor and pathway to help spur their rampant, unwanted growth.

The research, led by principal investigator Karl Willert, PhD, assistant professor in the Department of Cellular and Molecular Medicine, focuses upon the role of the highly conserved WNT signaling pathway, a large family of genes long recognized as a critical regulator of stem cell self-renewal, and a particular encoded receptor known as frizzled family receptor 7 or FZD7.

"WNT signaling through FZD7 is necessary to maintain hESCs in an undifferentiated state," said Willert. "If we block FZD7 function, thus interfering with the WNT pathway, hESCs exit their undifferentiated and pluripotent state."

The researchers proved this by using an antibody-like protein that binds to FZD7, hindering its function. "Once FZD7 function is blocked with this FZD7-specific compound, hESCs are no longer able to receive the WNT signal essential to maintaining their undifferentiated state."

FZD7 is a so-called "onco-fetal protein," expressed only during embryonic development and by certain human tumors. Other studies have suggested that FZD7 may be a marker for cancer stem cells and play an important role in promoting tumor growth. If so, said Willert, disrupting FZD7 function in cancer cells is likely to interfere with their development and growth just as it does in hESCs.

Willert and colleagues, including co-author Dennis Carson, MD, of the Sanford Consortium for Regenerative Medicine and professor emeritus at UC San Diego, plan to further test their FZD7-blocking compound as a potential cancer treatment.

Co-authors include Ian J. Huggins, Luca Perna and David Brafman, Department of Cellular and Molecular Medicine, UCSD; Desheng Lu and Shiyin Yao, UC San Diego Moores Cancer Center; and Terry Gaasterland, Scripps Institution of Oceanography and Institute for Genomic Medicine, UCSD.

Funding support for this research came, in part, from the California Institute for Regenerative Medicine and the UC San Diego Stem Cell Program.

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht New procedure enables cultivation of human brain sections in the petri dish
19.10.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht The “everywhere” protein: honour for the unravellor of its biology
19.10.2017 | Boehringer Ingelheim Stiftung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>