Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Juvenile diarrhea virus analyzed

19.07.2011
Rice University scientists define structure of astrovirus

Rice University scientists have defined the structure -- down to the atomic level -- of a virus that causes juvenile diarrhea. The research may help direct efforts to develop medications that block the virus before it becomes infectious.

The new paper by Professor Yizhi Jane Tao, postdoctoral researcher Jinhui Dong and their colleagues was published in today's online edition of the Proceedings of the National Academy of Sciences.

Tao's Rice lab specializes in gleaning fine details of viral structures through X-ray crystallography and computer analysis of the complex molecules, ultimately pinpointing the location of every atom. That helps researchers see microscopic features on a virus, like the spot that allows it to bind to a cell or sites that are recognized by neutralization antibodies.

Among four small RNA viruses that typically infect people and animals, Tao said, astrovirus was the only one whose atomic structure was not yet known. First visualized through electron microscopy in 1975, it became clear in subsequent studies that the virus played a role in juvenile -- and sometimes adult -- outbreaks of diarrhea, as the second leading cause after rotavirus. Passed orally, most often through fecal matter, the illness is more inconvenient than dangerous, but if left untreated, children can become dehydrated.

The virus works its foul magic in humans' lower intestines, but to get there it has to run a gauntlet through the digestive tract and avoid proteases, part of the human immune system whose job is to destroy it. (Though one, trypsin, actually plays a role in activating astrovirus, she said.) When the astrovirus finds a target and viral RNA is let loose inside human cells, virus replication starts. If the host's immune system does not do a good enough job in removing the viruses, the malady will run its uncomfortable course in a couple of days.

Astrovirus bears a strong resemblance to the virus that causes hepatitis E (HEV). Tao, an associate professor of biochemistry and cell biology, said she decided to investigate astrovirus after completing a similar study of HEV two years ago. "I was thinking there's some connection between those viruses," she said. "Based on that assumption, we started to make constructs to see if we could produce, to start with, the surface spike on the viral capsid."

The capsid is a hard shell 33 nanometers wide that contains and protects its RNA. It has 30 even tinier spikes projecting from the surface, and each of those spikes may have a receptor-binding site.

Once the atomic structure of the spike was known, finding the receptor site took detective work that involved comparing genomic sequences of eight variants of astrovirus to find which were the best conserved. "Among those eight serotypes, we figured there must be a common receptor, and that should be conserved on the surface," said Dong, the paper's lead author.

In looking for the common receptor, the team found a shallow pocket in the spike that became a prime suspect for receptor binding.

The researchers also discovered the astrovirus may have a sweet tooth. "The size of the pockets suggests that it would most likely bind to sugar molecules, like disaccharides or trisaccharides," Tao said. "It may be that the virus binds to the sugar molecule and that helps it bind to the surface of a target cell."

Finally, the team also determined astrovirus resembles another of the four types of RNA-based viruses, calicivirus, although more remotely than HEV. They suspect astrovirus may be a hybrid, with parts derived from both HEV and calicivirus. "Clearly, these three are related somehow. It's an interesting point, but we can't determine that relationship based on what we know right now."

What researchers can do is begin to develop a vaccine or antiviral drug that will block astrovirus. "There's already a phase II vaccine (in trials) for HEV, so that gives us hope," Dong said.

"We will certainly work with other labs to identify compounds that can bind to this potential pocket," Tao said. "We can do this computationally. We can screen 50,000 compounds, for example, to see which may bind to the protein with high affinity. Then we can start the optimization procedure."

Co-authors of the paper are former Rice graduate student Liping Dong and Ernesto Méndez, a researcher at the National Autonomous University of Mexico.

The Welch Foundation, the National Institutes of Health and the Kresge Science Initiative Endowment Fund supported the research.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

Further reports about: RNA Science TV atomic structure human cell immune system juvenile

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>