Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Juvenile diarrhea virus analyzed

19.07.2011
Rice University scientists define structure of astrovirus

Rice University scientists have defined the structure -- down to the atomic level -- of a virus that causes juvenile diarrhea. The research may help direct efforts to develop medications that block the virus before it becomes infectious.

The new paper by Professor Yizhi Jane Tao, postdoctoral researcher Jinhui Dong and their colleagues was published in today's online edition of the Proceedings of the National Academy of Sciences.

Tao's Rice lab specializes in gleaning fine details of viral structures through X-ray crystallography and computer analysis of the complex molecules, ultimately pinpointing the location of every atom. That helps researchers see microscopic features on a virus, like the spot that allows it to bind to a cell or sites that are recognized by neutralization antibodies.

Among four small RNA viruses that typically infect people and animals, Tao said, astrovirus was the only one whose atomic structure was not yet known. First visualized through electron microscopy in 1975, it became clear in subsequent studies that the virus played a role in juvenile -- and sometimes adult -- outbreaks of diarrhea, as the second leading cause after rotavirus. Passed orally, most often through fecal matter, the illness is more inconvenient than dangerous, but if left untreated, children can become dehydrated.

The virus works its foul magic in humans' lower intestines, but to get there it has to run a gauntlet through the digestive tract and avoid proteases, part of the human immune system whose job is to destroy it. (Though one, trypsin, actually plays a role in activating astrovirus, she said.) When the astrovirus finds a target and viral RNA is let loose inside human cells, virus replication starts. If the host's immune system does not do a good enough job in removing the viruses, the malady will run its uncomfortable course in a couple of days.

Astrovirus bears a strong resemblance to the virus that causes hepatitis E (HEV). Tao, an associate professor of biochemistry and cell biology, said she decided to investigate astrovirus after completing a similar study of HEV two years ago. "I was thinking there's some connection between those viruses," she said. "Based on that assumption, we started to make constructs to see if we could produce, to start with, the surface spike on the viral capsid."

The capsid is a hard shell 33 nanometers wide that contains and protects its RNA. It has 30 even tinier spikes projecting from the surface, and each of those spikes may have a receptor-binding site.

Once the atomic structure of the spike was known, finding the receptor site took detective work that involved comparing genomic sequences of eight variants of astrovirus to find which were the best conserved. "Among those eight serotypes, we figured there must be a common receptor, and that should be conserved on the surface," said Dong, the paper's lead author.

In looking for the common receptor, the team found a shallow pocket in the spike that became a prime suspect for receptor binding.

The researchers also discovered the astrovirus may have a sweet tooth. "The size of the pockets suggests that it would most likely bind to sugar molecules, like disaccharides or trisaccharides," Tao said. "It may be that the virus binds to the sugar molecule and that helps it bind to the surface of a target cell."

Finally, the team also determined astrovirus resembles another of the four types of RNA-based viruses, calicivirus, although more remotely than HEV. They suspect astrovirus may be a hybrid, with parts derived from both HEV and calicivirus. "Clearly, these three are related somehow. It's an interesting point, but we can't determine that relationship based on what we know right now."

What researchers can do is begin to develop a vaccine or antiviral drug that will block astrovirus. "There's already a phase II vaccine (in trials) for HEV, so that gives us hope," Dong said.

"We will certainly work with other labs to identify compounds that can bind to this potential pocket," Tao said. "We can do this computationally. We can screen 50,000 compounds, for example, to see which may bind to the protein with high affinity. Then we can start the optimization procedure."

Co-authors of the paper are former Rice graduate student Liping Dong and Ernesto Méndez, a researcher at the National Autonomous University of Mexico.

The Welch Foundation, the National Institutes of Health and the Kresge Science Initiative Endowment Fund supported the research.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

Further reports about: RNA Science TV atomic structure human cell immune system juvenile

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>