Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jellyfish blooms transfer food energy from fish to bacteria

09.06.2011
Impact on ocean food webs likely to increase in the future

Jellyfish can be a nuisance to bathers and boaters in the Chesapeake Bay on the United States' East Coast and many other places along the world's coasts.


This species of jellyfish is called Chrysaora quinquecirrhe, one of two jellyfish species in the study. Credit: Rob Condon

A new study by researchers at the Virginia Institute of Marine Science (VIMS) shows that jellyfish also have a more significant impact, drastically altering marine food webs by shunting food energy toward bacteria.

An apparent increase in the size and frequency of jellyfish blooms in coastal and estuarine waters around the world during the last few decades means that jellies' impact on marine food webs is likely to increase in the future.

The results of the study, led by recent VIMS graduate Rob Condon--now a scientist at the Dauphin Island Sea Lab (DISL) in Alabama--appear in this week's issue of the journal Proceedings of the National Academy of Sciences.

His co-authors are VIMS scientists Deborah Steinberg and Deborah Bronk, Paul del Giorgio of the Université du Québec à Montréal, Thierry Bouvier of Université Montpellier in France, Monty Graham of DISL and Hugh Ducklow of the Marine Biological Laboratory in Woods Hole, Massachusetts.

The research was funded by the National Science Foundation (NSF).

"This intriguing finding demonstrates that changes at the top of the food web can affect even the most fundamental ecosystem processes," says David Garrison, director of NSF's Biological Oceanography Program.

Condon conducted his field studies by sampling jellyfish blooms in the York River, a tributary of lower Chesapeake Bay.

The team's experimental work took place in laboratories at VIMS, and in Canada and France.

The researchers tracked the flow of food energy in the lab by measuring the amount of carbon taken up and released by jellyfish and bacteria within closed containers during "incubation" experiments of varying length. Carbon is the "currency" of energy exchange in living systems.

"Jellyfish are voracious predators," says Condon. "They affect food webs by capturing plankton that would otherwise be eaten by fish, and converting that food energy into gelatinous biomass. This restricts the transfer of energy up the food chain, because jellyfish are not readily consumed by other predators."

Jellyfish also shunt food energy away from fish and shellfish that humans like to eat through their effects on the bacterial community.

"Marine bacteria typically play a key role in recycling carbon, nitrogen, phosphorus and other by-products of organic decay back into the food web," says Condon.

"But in our study, we found that when bacteria consumed dissolved organic matter from jellyfish they shunted it toward respiration rather than growth."

The upshot of this "jelly carbon shunt" is that bacteria in jelly-laden waters end up converting carbon back to carbon dioxide, rather than using it to grow larger or reproduce.

This means the carbon is lost as a direct source of organic energy for transfer up the food web.

The researchers think the shift toward bacterial respiration happens because jellyfish produce organic matter that is extra-rich in carbon.

They do so through excretion and the sloughing of mucus. "The mucus is the slime you feel when you pick up a jelly," says Steinberg.

The jellyfish in Condon's experiments released large quantities of carbon-rich organic matter--with 25- to 30-times more carbon than nitrogen.

That compares to a ratio of 6 parts carbon to 1 part nitrogen for the organic matter found dissolved in typical marine waters.

"The bacteria metabolized this carbon-rich material two to six times faster than they did with dissolved organic matter from water without jellyfish," says Condon.

"This rapid metabolism shunted carbon toward respiration rather than production, reducing their potential to assimilate this material by 10 to 15 percent."

Steinberg says that bacterial metabolism of dissolved organic matter from jellyfish is like "drinking Gatorade," while metabolism of dissolved organic matter from phytoplankton and other sources is like "eating a hamburger. It just doesn't provide an efficient food source for marine bacteria."

A final significant finding from the team's research is that an influx of dissolved organic matter from jellyfish blooms changes the make-up of the local microbial community.

"Dissolved organic matter [DOM] from jellyfish favored the rapid growth and dominance of specific bacterial groups that were otherwise rare in the York River," says Condon.

"This implies that jelly-DOM was channeled through a small component of the local microbial assemblage and thus induced large changes in community composition."

Overall, says Condon, the team's findings "suggest major shifts in microbial structure and function associated with jellyfish blooms, and a large detour of energy toward bacteria and away from higher trophic levels."

He adds that a host of factors, including climate change, over-harvesting of fish, fertilizer runoff and habitat modifications could help to fuel jellyfish blooms into the future.

"Indeed," he says, "we've seen this already in Chesapeake Bay. If these swarms continue to emerge, we could see a substantial biogeochemical impact on our ecosystems."

"Simply knowing how carbon is processed by phytoplankton, zooplankton, microbes or other trophic levels in space and time can lead to estimates of how much carbon energy is available for fish to consume," he says.

"The more we know, the better we can manage ecosystem resources."

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Life Sciences:

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA examines Peru's deadly rainfall

24.03.2017 | Earth Sciences

What does congenital Zika syndrome look like?

24.03.2017 | Health and Medicine

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>