Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Jellyfish blooms transfer food energy from fish to bacteria

Impact on ocean food webs likely to increase in the future

Jellyfish can be a nuisance to bathers and boaters in the Chesapeake Bay on the United States' East Coast and many other places along the world's coasts.

This species of jellyfish is called Chrysaora quinquecirrhe, one of two jellyfish species in the study. Credit: Rob Condon

A new study by researchers at the Virginia Institute of Marine Science (VIMS) shows that jellyfish also have a more significant impact, drastically altering marine food webs by shunting food energy toward bacteria.

An apparent increase in the size and frequency of jellyfish blooms in coastal and estuarine waters around the world during the last few decades means that jellies' impact on marine food webs is likely to increase in the future.

The results of the study, led by recent VIMS graduate Rob Condon--now a scientist at the Dauphin Island Sea Lab (DISL) in Alabama--appear in this week's issue of the journal Proceedings of the National Academy of Sciences.

His co-authors are VIMS scientists Deborah Steinberg and Deborah Bronk, Paul del Giorgio of the Université du Québec à Montréal, Thierry Bouvier of Université Montpellier in France, Monty Graham of DISL and Hugh Ducklow of the Marine Biological Laboratory in Woods Hole, Massachusetts.

The research was funded by the National Science Foundation (NSF).

"This intriguing finding demonstrates that changes at the top of the food web can affect even the most fundamental ecosystem processes," says David Garrison, director of NSF's Biological Oceanography Program.

Condon conducted his field studies by sampling jellyfish blooms in the York River, a tributary of lower Chesapeake Bay.

The team's experimental work took place in laboratories at VIMS, and in Canada and France.

The researchers tracked the flow of food energy in the lab by measuring the amount of carbon taken up and released by jellyfish and bacteria within closed containers during "incubation" experiments of varying length. Carbon is the "currency" of energy exchange in living systems.

"Jellyfish are voracious predators," says Condon. "They affect food webs by capturing plankton that would otherwise be eaten by fish, and converting that food energy into gelatinous biomass. This restricts the transfer of energy up the food chain, because jellyfish are not readily consumed by other predators."

Jellyfish also shunt food energy away from fish and shellfish that humans like to eat through their effects on the bacterial community.

"Marine bacteria typically play a key role in recycling carbon, nitrogen, phosphorus and other by-products of organic decay back into the food web," says Condon.

"But in our study, we found that when bacteria consumed dissolved organic matter from jellyfish they shunted it toward respiration rather than growth."

The upshot of this "jelly carbon shunt" is that bacteria in jelly-laden waters end up converting carbon back to carbon dioxide, rather than using it to grow larger or reproduce.

This means the carbon is lost as a direct source of organic energy for transfer up the food web.

The researchers think the shift toward bacterial respiration happens because jellyfish produce organic matter that is extra-rich in carbon.

They do so through excretion and the sloughing of mucus. "The mucus is the slime you feel when you pick up a jelly," says Steinberg.

The jellyfish in Condon's experiments released large quantities of carbon-rich organic matter--with 25- to 30-times more carbon than nitrogen.

That compares to a ratio of 6 parts carbon to 1 part nitrogen for the organic matter found dissolved in typical marine waters.

"The bacteria metabolized this carbon-rich material two to six times faster than they did with dissolved organic matter from water without jellyfish," says Condon.

"This rapid metabolism shunted carbon toward respiration rather than production, reducing their potential to assimilate this material by 10 to 15 percent."

Steinberg says that bacterial metabolism of dissolved organic matter from jellyfish is like "drinking Gatorade," while metabolism of dissolved organic matter from phytoplankton and other sources is like "eating a hamburger. It just doesn't provide an efficient food source for marine bacteria."

A final significant finding from the team's research is that an influx of dissolved organic matter from jellyfish blooms changes the make-up of the local microbial community.

"Dissolved organic matter [DOM] from jellyfish favored the rapid growth and dominance of specific bacterial groups that were otherwise rare in the York River," says Condon.

"This implies that jelly-DOM was channeled through a small component of the local microbial assemblage and thus induced large changes in community composition."

Overall, says Condon, the team's findings "suggest major shifts in microbial structure and function associated with jellyfish blooms, and a large detour of energy toward bacteria and away from higher trophic levels."

He adds that a host of factors, including climate change, over-harvesting of fish, fertilizer runoff and habitat modifications could help to fuel jellyfish blooms into the future.

"Indeed," he says, "we've seen this already in Chesapeake Bay. If these swarms continue to emerge, we could see a substantial biogeochemical impact on our ecosystems."

"Simply knowing how carbon is processed by phytoplankton, zooplankton, microbes or other trophic levels in space and time can lead to estimates of how much carbon energy is available for fish to consume," he says.

"The more we know, the better we can manage ecosystem resources."

Cheryl Dybas | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>