Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Japanese researchers report on liver transplantation studies using animal and iPS cells

Two research teams from the Okayama University Graduate School of Medicine (Okayama, Japan) have reported breakthrough studies in liver cell transplantation.

One team found that the technical breakthrough in creating induced pluripotent stem cells (iPS) from mouse somatic cells (nonsex cells) in vitro had "implications for overcoming immunological rejection."

Whereas a second team using liver cell xenotransplantation - transplanting cells of one species into another (in this case transplanting pig liver cells into mice) - found that transplanted liver cells from widely divergent species can function to correct acute liver failure and prolong survival.

Their studies, published in the current issue of Cell Transplantation (19:6/7), are freely available on-line at

Somatic cells differentiate into hepatocyte-like cells

A research team at the Okayama University Graduate School of Medicine, working with colleagues at the University of Pittsburgh School of Medicine found that mouse induced pluripotent stem (iPS) cells are pluripotent (able to differentiate into many varieties of stem cells) and able to proliferate in vitro without limits and could be cultured to become hepatocyte-like cells.

According to the researchers, a major limitation for cell-based therapies to treat liver diseases is the shortage of cell donors. Rejection is still an issue and chronic immunosuppression is required for allotransplantation (cells from nonidentical donors), making patient-derived cells, especially somatic cells (non-sex cells) attractive for transplantation.

"The ability to make iPS cells from somatic cells has implications for overcoming both immunological rejection and ethical issues associated with embryonic stem cells," said corresponding author Dr. Masaya Iwamuro. "Our study will be an important step in generating hepatocytes from human iPS cells as a new source for liver-targeted cell therapies."

The researchers found that the transplanted hepatocyte-like cells they produced from the mouse iPS cells increased the production of albumin and were also able to metabolize ammonia, which are characteristics of functional hepatocytes.

"In the future, studies will generate new therapies that include the transplantation of iPS cell-derived hepatocytes without immunological barrier, in vitro determination of toxicity, and the development of personalized health care by evaluating drugs for efficacy and toxicity on patient-specific hepatocytes," concluded Dr. Iwamuro.

Contact: Dr. Masaya Iwamuro, Department of Gastroenterology and hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
Tel: +(81) 86-235-7219 Fax + 81 86-225-5991
Xenotransplantation for treating acute liver failure In another related study, lead author Dr. Naoya Kobayashi, argued that a scarcity of human livers for transplantation and the greater supply of porcine liver cells (hepatocytes) suggest that once technical issues are overcome, porcine liver cells might be transplanted successfully into human livers. Their recent study successfully transplanted porcine hepatocytes into mice with acute liver failure.

"Using xenogenic hepatocytes from animals such as pigs might be advantageous for treating acute liver failure in humans," said Dr. Kobayashi. "Hepatocytes are the main active cells in the liver. However, removal from the liver causes hepatocytes major stress and potential loss of function. We tested a scaffold to improve the success of hepatocyte xenotransplantation."

According to Dr. Kobayashi, many scientists are making efforts to recreate a functional liver "outside its own niche," and their study involved creating a self-assembling peptide nanofiber (SAPNF) scaffold and testing its ability to function in vivo.

"In this xenotransplantation model, we found that the SAPNF has an excellent ability to promote hepatocyte engraftment and maintains tremendous hepatocyte functions capable of rescuing mice from acute liver failure," concluded Dr. Kobayashi, whose team worked with colleagues from the Baylor (Texas) University Institution for Immunology Research.

Contact: Dr. Naoya Kobayashi, Department of Surgery Medical Research, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata, Okayama, 700-8558, Japan.
Tel: +81 86-235-7255, Fax + 81 86-235-7485
"These studies highlight the progress of Japanese research with respect to cell transplantation for liver disorders," said Dr. Paul Sanberg, coeditor-in-chief of the journal Cell Transplantation and director of the University of South Florida's Center of Excellence for Aging and Brain Repair.

The editorial offices for CELL TRANSPLANTATION are at the Center of Excellence for Aging and Brain Repair, College of Medicine, the University of South Florida and the Diabetes Research Institute, University of Miami Miller School of Medicine. Contact, David Eve, PhD. at or Camillo Ricordi, MD at

David Eve | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>