Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Japanese researchers report on liver transplantation studies using animal and iPS cells

19.10.2010
Two research teams from the Okayama University Graduate School of Medicine (Okayama, Japan) have reported breakthrough studies in liver cell transplantation.

One team found that the technical breakthrough in creating induced pluripotent stem cells (iPS) from mouse somatic cells (nonsex cells) in vitro had "implications for overcoming immunological rejection."

Whereas a second team using liver cell xenotransplantation - transplanting cells of one species into another (in this case transplanting pig liver cells into mice) - found that transplanted liver cells from widely divergent species can function to correct acute liver failure and prolong survival.

Their studies, published in the current issue of Cell Transplantation (19:6/7), are freely available on-line at http://www.ingentaconnect.com/content/cog/ct/

Somatic cells differentiate into hepatocyte-like cells

A research team at the Okayama University Graduate School of Medicine, working with colleagues at the University of Pittsburgh School of Medicine found that mouse induced pluripotent stem (iPS) cells are pluripotent (able to differentiate into many varieties of stem cells) and able to proliferate in vitro without limits and could be cultured to become hepatocyte-like cells.

According to the researchers, a major limitation for cell-based therapies to treat liver diseases is the shortage of cell donors. Rejection is still an issue and chronic immunosuppression is required for allotransplantation (cells from nonidentical donors), making patient-derived cells, especially somatic cells (non-sex cells) attractive for transplantation.

"The ability to make iPS cells from somatic cells has implications for overcoming both immunological rejection and ethical issues associated with embryonic stem cells," said corresponding author Dr. Masaya Iwamuro. "Our study will be an important step in generating hepatocytes from human iPS cells as a new source for liver-targeted cell therapies."

The researchers found that the transplanted hepatocyte-like cells they produced from the mouse iPS cells increased the production of albumin and were also able to metabolize ammonia, which are characteristics of functional hepatocytes.

"In the future, studies will generate new therapies that include the transplantation of iPS cell-derived hepatocytes without immunological barrier, in vitro determination of toxicity, and the development of personalized health care by evaluating drugs for efficacy and toxicity on patient-specific hepatocytes," concluded Dr. Iwamuro.

Contact: Dr. Masaya Iwamuro, Department of Gastroenterology and hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
Tel: +(81) 86-235-7219 Fax + 81 86-225-5991
Email iwamoruroasaya@yahoo.co.jp
Xenotransplantation for treating acute liver failure In another related study, lead author Dr. Naoya Kobayashi, argued that a scarcity of human livers for transplantation and the greater supply of porcine liver cells (hepatocytes) suggest that once technical issues are overcome, porcine liver cells might be transplanted successfully into human livers. Their recent study successfully transplanted porcine hepatocytes into mice with acute liver failure.

"Using xenogenic hepatocytes from animals such as pigs might be advantageous for treating acute liver failure in humans," said Dr. Kobayashi. "Hepatocytes are the main active cells in the liver. However, removal from the liver causes hepatocytes major stress and potential loss of function. We tested a scaffold to improve the success of hepatocyte xenotransplantation."

According to Dr. Kobayashi, many scientists are making efforts to recreate a functional liver "outside its own niche," and their study involved creating a self-assembling peptide nanofiber (SAPNF) scaffold and testing its ability to function in vivo.

"In this xenotransplantation model, we found that the SAPNF has an excellent ability to promote hepatocyte engraftment and maintains tremendous hepatocyte functions capable of rescuing mice from acute liver failure," concluded Dr. Kobayashi, whose team worked with colleagues from the Baylor (Texas) University Institution for Immunology Research.

Contact: Dr. Naoya Kobayashi, Department of Surgery Medical Research, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata, Okayama, 700-8558, Japan.
Tel: +81 86-235-7255, Fax + 81 86-235-7485
Email immortal@md.okayama-u.ac.jp
"These studies highlight the progress of Japanese research with respect to cell transplantation for liver disorders," said Dr. Paul Sanberg, coeditor-in-chief of the journal Cell Transplantation and director of the University of South Florida's Center of Excellence for Aging and Brain Repair.

The editorial offices for CELL TRANSPLANTATION are at the Center of Excellence for Aging and Brain Repair, College of Medicine, the University of South Florida and the Diabetes Research Institute, University of Miami Miller School of Medicine. Contact, David Eve, PhD. at celltransplantation@gmail.com or Camillo Ricordi, MD at ricordi@miami.edu

David Eve | EurekAlert!
Further information:
http://www.ingentaconnect.com/content/cog/ct/

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>