Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Japanese researchers report on liver transplantation studies using animal and iPS cells

19.10.2010
Two research teams from the Okayama University Graduate School of Medicine (Okayama, Japan) have reported breakthrough studies in liver cell transplantation.

One team found that the technical breakthrough in creating induced pluripotent stem cells (iPS) from mouse somatic cells (nonsex cells) in vitro had "implications for overcoming immunological rejection."

Whereas a second team using liver cell xenotransplantation - transplanting cells of one species into another (in this case transplanting pig liver cells into mice) - found that transplanted liver cells from widely divergent species can function to correct acute liver failure and prolong survival.

Their studies, published in the current issue of Cell Transplantation (19:6/7), are freely available on-line at http://www.ingentaconnect.com/content/cog/ct/

Somatic cells differentiate into hepatocyte-like cells

A research team at the Okayama University Graduate School of Medicine, working with colleagues at the University of Pittsburgh School of Medicine found that mouse induced pluripotent stem (iPS) cells are pluripotent (able to differentiate into many varieties of stem cells) and able to proliferate in vitro without limits and could be cultured to become hepatocyte-like cells.

According to the researchers, a major limitation for cell-based therapies to treat liver diseases is the shortage of cell donors. Rejection is still an issue and chronic immunosuppression is required for allotransplantation (cells from nonidentical donors), making patient-derived cells, especially somatic cells (non-sex cells) attractive for transplantation.

"The ability to make iPS cells from somatic cells has implications for overcoming both immunological rejection and ethical issues associated with embryonic stem cells," said corresponding author Dr. Masaya Iwamuro. "Our study will be an important step in generating hepatocytes from human iPS cells as a new source for liver-targeted cell therapies."

The researchers found that the transplanted hepatocyte-like cells they produced from the mouse iPS cells increased the production of albumin and were also able to metabolize ammonia, which are characteristics of functional hepatocytes.

"In the future, studies will generate new therapies that include the transplantation of iPS cell-derived hepatocytes without immunological barrier, in vitro determination of toxicity, and the development of personalized health care by evaluating drugs for efficacy and toxicity on patient-specific hepatocytes," concluded Dr. Iwamuro.

Contact: Dr. Masaya Iwamuro, Department of Gastroenterology and hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
Tel: +(81) 86-235-7219 Fax + 81 86-225-5991
Email iwamoruroasaya@yahoo.co.jp
Xenotransplantation for treating acute liver failure In another related study, lead author Dr. Naoya Kobayashi, argued that a scarcity of human livers for transplantation and the greater supply of porcine liver cells (hepatocytes) suggest that once technical issues are overcome, porcine liver cells might be transplanted successfully into human livers. Their recent study successfully transplanted porcine hepatocytes into mice with acute liver failure.

"Using xenogenic hepatocytes from animals such as pigs might be advantageous for treating acute liver failure in humans," said Dr. Kobayashi. "Hepatocytes are the main active cells in the liver. However, removal from the liver causes hepatocytes major stress and potential loss of function. We tested a scaffold to improve the success of hepatocyte xenotransplantation."

According to Dr. Kobayashi, many scientists are making efforts to recreate a functional liver "outside its own niche," and their study involved creating a self-assembling peptide nanofiber (SAPNF) scaffold and testing its ability to function in vivo.

"In this xenotransplantation model, we found that the SAPNF has an excellent ability to promote hepatocyte engraftment and maintains tremendous hepatocyte functions capable of rescuing mice from acute liver failure," concluded Dr. Kobayashi, whose team worked with colleagues from the Baylor (Texas) University Institution for Immunology Research.

Contact: Dr. Naoya Kobayashi, Department of Surgery Medical Research, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata, Okayama, 700-8558, Japan.
Tel: +81 86-235-7255, Fax + 81 86-235-7485
Email immortal@md.okayama-u.ac.jp
"These studies highlight the progress of Japanese research with respect to cell transplantation for liver disorders," said Dr. Paul Sanberg, coeditor-in-chief of the journal Cell Transplantation and director of the University of South Florida's Center of Excellence for Aging and Brain Repair.

The editorial offices for CELL TRANSPLANTATION are at the Center of Excellence for Aging and Brain Repair, College of Medicine, the University of South Florida and the Diabetes Research Institute, University of Miami Miller School of Medicine. Contact, David Eve, PhD. at celltransplantation@gmail.com or Camillo Ricordi, MD at ricordi@miami.edu

David Eve | EurekAlert!
Further information:
http://www.ingentaconnect.com/content/cog/ct/

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>