Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Japanese researchers report on liver transplantation studies using animal and iPS cells

19.10.2010
Two research teams from the Okayama University Graduate School of Medicine (Okayama, Japan) have reported breakthrough studies in liver cell transplantation.

One team found that the technical breakthrough in creating induced pluripotent stem cells (iPS) from mouse somatic cells (nonsex cells) in vitro had "implications for overcoming immunological rejection."

Whereas a second team using liver cell xenotransplantation - transplanting cells of one species into another (in this case transplanting pig liver cells into mice) - found that transplanted liver cells from widely divergent species can function to correct acute liver failure and prolong survival.

Their studies, published in the current issue of Cell Transplantation (19:6/7), are freely available on-line at http://www.ingentaconnect.com/content/cog/ct/

Somatic cells differentiate into hepatocyte-like cells

A research team at the Okayama University Graduate School of Medicine, working with colleagues at the University of Pittsburgh School of Medicine found that mouse induced pluripotent stem (iPS) cells are pluripotent (able to differentiate into many varieties of stem cells) and able to proliferate in vitro without limits and could be cultured to become hepatocyte-like cells.

According to the researchers, a major limitation for cell-based therapies to treat liver diseases is the shortage of cell donors. Rejection is still an issue and chronic immunosuppression is required for allotransplantation (cells from nonidentical donors), making patient-derived cells, especially somatic cells (non-sex cells) attractive for transplantation.

"The ability to make iPS cells from somatic cells has implications for overcoming both immunological rejection and ethical issues associated with embryonic stem cells," said corresponding author Dr. Masaya Iwamuro. "Our study will be an important step in generating hepatocytes from human iPS cells as a new source for liver-targeted cell therapies."

The researchers found that the transplanted hepatocyte-like cells they produced from the mouse iPS cells increased the production of albumin and were also able to metabolize ammonia, which are characteristics of functional hepatocytes.

"In the future, studies will generate new therapies that include the transplantation of iPS cell-derived hepatocytes without immunological barrier, in vitro determination of toxicity, and the development of personalized health care by evaluating drugs for efficacy and toxicity on patient-specific hepatocytes," concluded Dr. Iwamuro.

Contact: Dr. Masaya Iwamuro, Department of Gastroenterology and hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan.
Tel: +(81) 86-235-7219 Fax + 81 86-225-5991
Email iwamoruroasaya@yahoo.co.jp
Xenotransplantation for treating acute liver failure In another related study, lead author Dr. Naoya Kobayashi, argued that a scarcity of human livers for transplantation and the greater supply of porcine liver cells (hepatocytes) suggest that once technical issues are overcome, porcine liver cells might be transplanted successfully into human livers. Their recent study successfully transplanted porcine hepatocytes into mice with acute liver failure.

"Using xenogenic hepatocytes from animals such as pigs might be advantageous for treating acute liver failure in humans," said Dr. Kobayashi. "Hepatocytes are the main active cells in the liver. However, removal from the liver causes hepatocytes major stress and potential loss of function. We tested a scaffold to improve the success of hepatocyte xenotransplantation."

According to Dr. Kobayashi, many scientists are making efforts to recreate a functional liver "outside its own niche," and their study involved creating a self-assembling peptide nanofiber (SAPNF) scaffold and testing its ability to function in vivo.

"In this xenotransplantation model, we found that the SAPNF has an excellent ability to promote hepatocyte engraftment and maintains tremendous hepatocyte functions capable of rescuing mice from acute liver failure," concluded Dr. Kobayashi, whose team worked with colleagues from the Baylor (Texas) University Institution for Immunology Research.

Contact: Dr. Naoya Kobayashi, Department of Surgery Medical Research, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata, Okayama, 700-8558, Japan.
Tel: +81 86-235-7255, Fax + 81 86-235-7485
Email immortal@md.okayama-u.ac.jp
"These studies highlight the progress of Japanese research with respect to cell transplantation for liver disorders," said Dr. Paul Sanberg, coeditor-in-chief of the journal Cell Transplantation and director of the University of South Florida's Center of Excellence for Aging and Brain Repair.

The editorial offices for CELL TRANSPLANTATION are at the Center of Excellence for Aging and Brain Repair, College of Medicine, the University of South Florida and the Diabetes Research Institute, University of Miami Miller School of Medicine. Contact, David Eve, PhD. at celltransplantation@gmail.com or Camillo Ricordi, MD at ricordi@miami.edu

David Eve | EurekAlert!
Further information:
http://www.ingentaconnect.com/content/cog/ct/

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>