Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ISG15: A novel therapeutic target to slow breast cancer cell motility

12.01.2012
Interferon-stimulated gene 15 (ISG15), a ubiquitin like protein, is highly elevated in a variety of cancers including breast cancer.

How the elevated ISG15 pathway contributes to tumorigenic phenotypes remains unclear and is the subject of a study published in the January 2012 issue of Experimental Biology and Medicine.

Dr. Shyamal Desai and her co-investigators from the Louisiana State University School of Medicine in New Orleans, the University of Pennsylvania School of Medicine in Philadelphia, and the Robert Wood Johnson School of Medicine in New Jersey report that gene knock-down studies demonstrate that elevated ISG15 pathway results in disruption of the cytoskeletal architecture of breast cancer cells. ISG15 also inhibits degradation of cellular proteins involved in cell motility, invasion, and metastasis, promoting breast cancer cell migration.

Dr. Desai said "Using ISG15 and UbcH8 gene knocked-down approach, our recent published and unpublished results explicitly demonstrated that the ISG15 pathway inhibits the ubiquitin-mediated proteasome-dependent protein degradation in breast cancer cells. We were the first to recognize this antagonizing effect of ISG15 in cancer cells"; however, others are increasingly coming to the same conclusion in their observations that ISG15 conjugation stabilizes cellular proteins.

Dr. Arthur Haas said "Given the crucial role of the ubiquitin/26S proteasome pathway in normal cell homeostasis, one expects that ISG15-induced downregulation of the ubiquitin pathway must contribute to breast tumor cell viability. Concurrently, in this manuscript we demonstrate that ISG15 promotes breast cancer cell migration by inhibiting ubiquitin-mediated degradation of cellular proteins associated with cell motility, invasion and metastasis".

The authors report that the elevated ISG15 pathway results in disruption of the cytoskeletal architecture effecting actin polymerization and formation of focal adhesions in breast cancer cells. Targeted knockdown of both ISG15 and UbcH8 resulted in reconstitution of the cytoskeletal architecture. Dr. Desai said "Disruption of cellular architecture is a hallmark of cancer. The ISG15 pathway is also elevated in a variety of tumors. Our results therefore reveal that the ISG15 pathway which is aberrantly elevated in tumors could disrupt cell architecture and contribute to breast cancer cell motility". "Because the cellular architecture is conserved and the ISG15 pathway is constitutively activated in tumor cells of different lineages, our observations in breast cancer must hold true for many other tumors".

If ISG15 confers motility to tumor cells in vivo, as suggested in this manuscript, then Dr. Desai concludes that "strategies to decrease ISGylation could provide a therapeutic advantage for patients diagnosed with metastatic tumors overexpressing the ISG15 pathway".

Dr. Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine said that "these intriguing studies by Desai and colleagues suggests that modulation of the ISG15 pathway may provide future therapeutic targets for breast cancer and other metastatic tumors".

Experimental Biology and Medicine is the journal of the Society of Experimental Biology and Medicine. To learn about the benefits of society membership visit http://www.sebm.org. If you are interested in publishing in the journal please visit http://www.ebmonline.org.

Dr. Shyamal D. Desai | EurekAlert!
Further information:
http://www.sebm.org

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>