Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iron Oxide as an Ultralightweight

26.02.2014

Iron oxide frameworks with hierarchical pore structure from pyrolysis of Prussian blue nanocrystals

Adsorption, catalysis, or substrates for tissue growth: porous materials have many potential applications. In the journal Angewandte Chemie, a team of Chinese and Australian researchers has now introduced a method for the synthesis of ultralight three-dimensional (3D) iron oxide frameworks with two different types of nanoscopic pores and tunable surface properties. This superparamagnetic material can be cut into arbitrary shapes and is suitable for applications such as multiphase catalysis and the removal of heavy metal ions and oil from water.


Materials with hierarchically organized pore systems—meaning that the walls of macropores with diameters in the micrometer range contain mesopores of just a few nanometers—are high on the wish lists of materials researchers. The advantages of these materials include their high surface area and the easy accessibility of the small pores through the larger ones. The great desirability of these materials is matched by the degree of difficulty in producing them on an industrial scale.

Scientists at Fudan University (China) and Monash University (Australia) have now successfully produced an ultralight iron oxide framework with 250 µm and 18 nm pores in a process that can be used on an industrial scale.

A team led by Gengfeng Zheng and Dongyuan Zhao used highly porous polyurethane sponges as a “matrix”, which were soaked with yellow potassium hexacyanoferrate (K4[Fe(CN)6]). Subsequent hydrolysis resulted in cubic nanocrystals of Prussian blue (iron hexacyanoferrate), a dark blue pigment, which were deposited all over the surfaces of the sponge.

The polyurethane sponge was then fully burned away through pyroloysis and the Prussian blue was converted to iron oxide. The result is a 3D framework of iron oxide cubes that are in turn made of iron oxide nanoparticles and contain mesopores. The material is so light that the researchers were able to balance a 240 cm3 piece on an oleander blossom.

Simple modifications allow the surface of the 3D framework to be varied from strongly hydrophilic to strongly hydrophobic for different applications. The researchers demonstrated this by removing arsenic ions from contaminated water and by separating water from gasoline. In the latter experiment, the resol-coated iron oxide framework absorbed more than 150 times of its own weight in gasoline.

The resol-coated frameworks are also suitable for use as nanoreactors for catalytic multiphase reactions between hydrophilic and hydrophobic reactants, which can normally only be made miscible through addition of various phase-transfer reagents and cosolvents. With the resol-coated iron oxide framework, the reaction runs much faster and more selectively without these additives, giving high yields. This is because of the tunable hydrophilic/hydrophobic surfaces of the mesopores, which take in both reagents and bring them into contact with each other. The catalyst can be retrieved magnetically, because the iron oxide nanoparticles of the 3D frameworks are superparamagnetic.

Author: Dongyuan Zhao, Fudan University, Shanghai (China), http://www.mesogroup.fudan.edu.cn/

Title: Ultralight Mesoporous Magnetic Frameworks by Interfacial Assembly of Prussian Blue Nanocubes

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201308625 

Dongyuan Zhao | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

Further reports about: Interfacial Iron Oxide gasoline hydrophilic hydrophobic materials nanoparticles pores porous sponge superparamagnetic surfaces

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>