Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iron Oxide as an Ultralightweight

26.02.2014

Iron oxide frameworks with hierarchical pore structure from pyrolysis of Prussian blue nanocrystals

Adsorption, catalysis, or substrates for tissue growth: porous materials have many potential applications. In the journal Angewandte Chemie, a team of Chinese and Australian researchers has now introduced a method for the synthesis of ultralight three-dimensional (3D) iron oxide frameworks with two different types of nanoscopic pores and tunable surface properties. This superparamagnetic material can be cut into arbitrary shapes and is suitable for applications such as multiphase catalysis and the removal of heavy metal ions and oil from water.


Materials with hierarchically organized pore systems—meaning that the walls of macropores with diameters in the micrometer range contain mesopores of just a few nanometers—are high on the wish lists of materials researchers. The advantages of these materials include their high surface area and the easy accessibility of the small pores through the larger ones. The great desirability of these materials is matched by the degree of difficulty in producing them on an industrial scale.

Scientists at Fudan University (China) and Monash University (Australia) have now successfully produced an ultralight iron oxide framework with 250 µm and 18 nm pores in a process that can be used on an industrial scale.

A team led by Gengfeng Zheng and Dongyuan Zhao used highly porous polyurethane sponges as a “matrix”, which were soaked with yellow potassium hexacyanoferrate (K4[Fe(CN)6]). Subsequent hydrolysis resulted in cubic nanocrystals of Prussian blue (iron hexacyanoferrate), a dark blue pigment, which were deposited all over the surfaces of the sponge.

The polyurethane sponge was then fully burned away through pyroloysis and the Prussian blue was converted to iron oxide. The result is a 3D framework of iron oxide cubes that are in turn made of iron oxide nanoparticles and contain mesopores. The material is so light that the researchers were able to balance a 240 cm3 piece on an oleander blossom.

Simple modifications allow the surface of the 3D framework to be varied from strongly hydrophilic to strongly hydrophobic for different applications. The researchers demonstrated this by removing arsenic ions from contaminated water and by separating water from gasoline. In the latter experiment, the resol-coated iron oxide framework absorbed more than 150 times of its own weight in gasoline.

The resol-coated frameworks are also suitable for use as nanoreactors for catalytic multiphase reactions between hydrophilic and hydrophobic reactants, which can normally only be made miscible through addition of various phase-transfer reagents and cosolvents. With the resol-coated iron oxide framework, the reaction runs much faster and more selectively without these additives, giving high yields. This is because of the tunable hydrophilic/hydrophobic surfaces of the mesopores, which take in both reagents and bring them into contact with each other. The catalyst can be retrieved magnetically, because the iron oxide nanoparticles of the 3D frameworks are superparamagnetic.

Author: Dongyuan Zhao, Fudan University, Shanghai (China), http://www.mesogroup.fudan.edu.cn/

Title: Ultralight Mesoporous Magnetic Frameworks by Interfacial Assembly of Prussian Blue Nanocubes

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201308625 

Dongyuan Zhao | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

Further reports about: Interfacial Iron Oxide gasoline hydrophilic hydrophobic materials nanoparticles pores porous sponge superparamagnetic surfaces

More articles from Life Sciences:

nachricht Switch for building barrier in roots
29.07.2015 | The University of Tokyo

nachricht How to make chromosomes from DNA
29.07.2015 | The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

Im Focus: NASA satellite camera provides 'EPIC' view of Earth

A NASA camera on the Deep Space Climate Observatory (DSCOVR) satellite has returned its first view of the entire sunlit side of Earth from one million miles away.

The color images of Earth from NASA's Earth Polychromatic Imaging Camera (EPIC) are generated by combining three separate images to create a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Acetic acid as a proton shuttle in gold chemistry

29.07.2015 | Life Sciences

“Carbon sink” detected underneath world’s deserts

29.07.2015 | Earth Sciences

Switch for building barrier in roots

29.07.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>