Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interferon Needed for Cells to 'Remember’ How to Defeat a Virus

04.12.2008
Scientists at UT Southwestern Medical Center have determined that the immune-system protein interferon plays a key role in “teaching” the immune system how to fight off repeated infections of the same virus.

The findings, available online and in the Dec. 15 issue of the Journal of Immunology, have potential application in the development of more effective vaccines and anti-viral therapies.

Typically, when a person is infected with a virus, the human body immediately generates a massive number of T cells – a type of immune cell – that kill off the infected cells. Once the infection has cleared, most of the T cells also die off, leaving behind a small pool of central memory cells that “remember” how to fight that particular type of virus if the person is infected again.

“In this study, we have uncovered interferon’s role and the key signaling protein, called IL-2, involved in generating memory T cells,” said Dr. David Farrar, assistant professor of immunology at UT Southwestern and senior author of the study. “Knowing how T cells acquire this memory may help us design better strategies and vaccines to fight HIV and other infectious diseases. Further, our discovery was made using primary human CD4+ T cells, which underscores the relevance of our discovery to human immune responses.”

CD4+ T cells coordinate the actions of other cells at the site of infection.

When a virus or bacterium infects a human, the infected cells secrete several molecules, including a cytokine – or signaling protein – called interferon alpha. The action of interferon is what makes an infected person feel run down and tired. Although scientists knew that interferon alpha prevented a virus from multiplying and spreading, they didn’t know what role interferon played in the creation of memory cells.

In the current study, the UT Southwestern researchers show that both interferon alpha and another signaling protein called IL-12 are needed to induce the creation of memory cells. They found that interferon and IL-12 team up to promote the creation of a special set of cells that then secrete another signaling protein called IL-2. These IL-2-secreting cells are the ones that remain in the body and “remember” how to fight off the virus.

“Without the IL-2 signaling protein, you’ll generate a beautiful primary response against a virus, and you’ll eliminate the bug, but your body won’t remember how it defeated the virus,” Dr. Farrar said. “Without these memory cells, your body is defenseless against re-infections.”

Ann Davis, student research assistant in immunology and lead author of the study, said this suggests a new role for interferon: teacher.

“This is really the first demonstration of a role for interferon in teaching a T cell how to respond to viral infections,” she said.

Dr. Farrar added: “Up until now, interferon has always been appreciated for its role in inhibiting virus infections. But no one’s really paid attention to interferon and its role in regulating memory. That’s why we’re so excited about this result.”

The next step, Dr. Farrar said, is to complete the same study in mice. Early results show that mice with T cells that can’t respond to interferon are unable to protect themselves when a virus invades.

“Their immune systems have no idea how to fight the virus,” Dr. Farrar said.
Dr. Farrar said these early findings in mice may pave the way for designing more effective vaccines.

Other UT Southwestern researchers involved in the study were Hilario Ramos, student research assistant in immunology, and Dr. Laurie Davis, associate professor of internal medicine.

The National Institutes of Health supported the research.

Dr. David Farrar -- http://www.utsouthwestern.edu/findfac/professional/0,2356,12163,00.html

Kristen Holland Shear | Newswise Science News
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>