Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interaction between two leukemia drugs explained

05.11.2013
Currently no treatment option is available for five percent of patients suffering from chronic myelogenous leukemia, since they have developed resistance to conventional medications.

Prof. Stephan Grzesiek’s group at the Biozentrum of the University of Basel, in collaboration with Dr. Wolfgang Jahnke and colleagues from Novartis, has investigated the combined action of two different compounds against this form of leukemia.


Structure of the open tyrosin kinase-imatinib complex.

They have been able to explain at the atomic level, how both substances alter the structure of an enzyme and how their combination potentially can overcome drug resistance. Their findings are published in the current issue of PNAS.

Chronic myeloid leukemia (CML) is a form of blood cancer based on a genetic disorder that leads to the overproduction of white blood cells. Ninety-five percent of affected patients can be treated successfully with the Novartis drug imatinib, also known as Gleevec®. Imatinib is an inhibitor that blocks the ATP-binding site of the tyrosine kinase Abl in affected blood cells, thereby suppressing their overactivity. Consequently, the pathological overproduction of leucocytes is stopped and the blood count normalizes.

Five percent of all patients are not cured by imatinib

However, in five percent of CML patients, typically in an advanced stage of the disease, imatinib and similar ATP-binding site inhibitors are not effective. This resistance against treatment is caused by a mutation at the ATP-binding site, which prevents the inhibitors from inactivating the enzyme. Currently, new treatments are being developed to help such resistant patients. One approach is based on the combination of ATP-binding site inhibitors with so-called allosteric inhibitors, which bind to a different location.

Why the drug combination works in resistant CML

Why such a combination of the two inhibitor types works in an animal model has now been explained by Prof. Stephan Grzesiek‘s team at the Biozentrum of the University of Basel and Dr. Wolfgang Jahnke from Novartis, by a structural analysis using nuclear magnetic resonance spectroscopy (NMR). Under physiological conditions, the tyrosine kinase Abl is found in two different spatial structures - an open and a closed state - which exist in a delicate equilibrium. The researchers have shown that the binding of imatinib unexpectedly shifts this equilibrium to the open state. Although the enzyme itself is inhibited in this state, it can be more easily re-activated through other tyrosine kinases. The allosteric inhibitor GNF-5, however, stabilizes the closed, inactivated state, and even recloses the imatinib-induced open state.

“Thus the inhibitory potentials of both drugs add together to suppress the kinase activity. Our structural analysis enables us to understand why GNF-5 contributes to overcome imatinib resistance,” explains Lukasz Skora, a former postdoc from Stephan Grzesiek’s lab. These results provide a detailed insight into how Abl kinase behaves under the influence of inhibitors, giving hope for a successful combination therapy.

Original Citation
Lukasz Skora, Jürgen Mestan, Doriano Fabbro, Wolfgang Jahnke, and Stephan Grzesiek.
NMR reveals the allosteric opening and closing of Abelson kinase by ATP-site and myristoyl pocket inhibitors.

Proceedings of the National Academy of Sciences PNAS, Published online 4 November 2013.

Further Information
Prof. Dr. Stephan Grzesiek, Biozentrum of the University of Basel, Tel.: +41 61 267 21 00, E-Mail: stephan.grzesiek@unibas.ch
Weitere Informationen:
http://www.pnas.org/content/early/2013/11/01/1314712110.abstract
- Abstract

Christoph Dieffenbacher | Universität Basel
Further information:
http://www.unibas.ch

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>