Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Integrated optical trap holds particles for on-chip analysis

07.07.2009
A new type of optical particle trap can be used to manipulate bacteria, viruses and other particles on a chip as part of an integrated optofluidic platform.

The optical trap is the latest innovation from researchers at the Jack Baskin School of Engineering at the University of California, Santa Cruz, who are developing new sensor technology for biomedical analysis and other applications.

"Ultimately, it could have applications for rapid detection of bacteria and viruses in hospitals, for cell sorting in research labs, and for process monitoring in chemical engineering," said Holger Schmidt, professor of electrical engineering and director of the W. M. Keck Center for Nanoscale Optofluidics at UCSC.

The new technique offers the potential to create a smaller, cheaper version of the sophisticated equipment used to perform fluorescence-activated cell sorting (FACS), Schmidt said.

"The capabilities of our optofluidic platform are continuing to grow. We have gone from the detection of single molecules and single viruses to now being able to control the movement of particles," he said.

Schmidt's group has received a $400,000 grant from the National Institutes of Health to explore particle trapping and sorting and other applications of the optofluidics platform. An article describing the optical trap for on-chip particle analysis has been published online by the journal Lab on a Chip. First author Sergei Kuhn was a postdoctoral researcher in Schmidt's lab and is now at the Max-Born Institute in Berlin. Coauthors include David Deamer and Philip Measor at UCSC and E. J. Lunt, B. S. Phillips, and A. R. Hawkins of Brigham Young University, where the optofluidic chips are fabricated.

Optical traps and "optical tweezers" use the momentum carried by the photons in a beam of light to exert forces on microscopic objects, enabling researchers to manipulate objects ranging from biological molecules to living cells. Schmidt's group developed a new way to perform optical trapping on a chip-based platform.

The technique relies on an earlier innovation from Schmidt's lab: a hollow-core optical waveguide that can direct a beam of light through a liquid-filled channel on a chip. To trap particles, the researchers used two laser beams at opposite ends of a channel. A particle gets trapped at the point where the forces exerted by the two beams are equal, and the particle can be moved by changing the relative power of the two laser beams.

"We can also use this like an optical leaf blower to push all the particles in a sample to the same spot and increase the concentration," Schmidt said. "The goal is to control the position and movement of particles through channels on a chip so they can be studied using fluorescence analysis and other optical methods."

The Jack Baskin School of Engineering at UCSC prepares technologists--and sponsors technology--for our changing world. Founded in 1997, Baskin Engineering trains students in six future-focused areas of engineering: biotechnology/information technology/ nanotechnology; information and communication infrastructure; mathematical and statistical modeling; software and services engineering; system design; and bioengineering. Baskin Engineering faculty conduct industry-leading research that is improving the way the world does business, treats the environment, and nurtures humanity.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>