Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insulin signaling key to caste development in bees

15.07.2010
What makes a bee grow up to be a queen? Scientists have long pondered this mystery.

Now, researchers in the School of Life Sciences at Arizona State University have fit a new piece into the puzzle of bee development. Their work not only adds to understanding about bees, but also adds insights into our own development and aging.

The study, which appeared in the June 30 online edition of Biology Letters, shows that a key protein in the insulin signaling pathway plays a strong role in caste development among bees.

A female bee can become either a worker or a queen. Queen bees are larger and live longer than workers. Queen bees are also fertile while workers are essentially sterile. A queen has only one role—to lay eggs—while workers tend the hive, care for the queen and larvae, and forage for food.

"The incredible thing is that both of these types of female honeybees emerge from the same genome," says Florian Wolschin, an assistant research professor in the School of Life Sciences in ASU's College of Liberal Arts and Sciences, is the lead author of the study. "So how does that happen?"

Workers determine the fate of the larvae by what they feed them. The amount and composition of food that the larvae receive determine whether they become workers or queens. People have known this for many years, but exactly what happens inside the cells to create this split isn't completely clear.

Wolschin, Gro Amdam, an associate professor, and Navdeep S. Mutti, a postdoctoral research associate, found that the insulin signaling pathway plays a role in caste development. Insulin is a hormone found in humans and many other animals, and insulin-like peptides have been discovered in bees. Insulin moves glucose—sugar—from the bloodstream into the body's cells where it can be used.

The researchers suppressed one of the key proteins in this pathway in honeybee larvae. The protein, called the insulin receptor substrate (IRS), has been linked to growth, development and reproduction in mice. The researchers fed the altered larvae a queen's diet, but they developed into workers, not queens.

IRS is only one component of the process that decides a bee's ultimate fate. Wolschin says several other molecules are known to play a role, including DNA methyltransferase, juvenile hormone and a protein called TOR.

"Those are all very important and fundamental mechanisms," says Wolschin. "One single part cannot alone be responsible. It has to be the interplay between different mechanisms that finally results in the divergence of queens and workers."

The researchers are now looking at the interconnections between several of these factors. "We want to see if maybe there's a hierarchy involved. Several of the components are probably 'upstream' of other processes. So they serve as mass regulators and switches," says Wolschin.

Honeybees are vitally important to our economy through pollination of crops as well as production of honey, wax and royal jelly. Understanding bee biology is crucial to maintaining this industry in the face of problems like colony collapse disorder.

Wolschin adds that bees also provide an important model system that can help us understand our own biology. For example, scientists have successfully reversed many signs of aging in worker bees.

"That is pretty unique," says Wolschin. "You don't have other model organisms in aging research that can do that."

Read the full study at: http://rsbl.royalsocietypublishing.org/content/early/2010/06/28/rsbl.2010.0463.full?sid=7539bb48-6a05-4618-b38c-eecaead0135a

Margaret Coulombe | EurekAlert!
Further information:
http://www.asu.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>