Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insulin signaling key to caste development in bees

15.07.2010
What makes a bee grow up to be a queen? Scientists have long pondered this mystery.

Now, researchers in the School of Life Sciences at Arizona State University have fit a new piece into the puzzle of bee development. Their work not only adds to understanding about bees, but also adds insights into our own development and aging.

The study, which appeared in the June 30 online edition of Biology Letters, shows that a key protein in the insulin signaling pathway plays a strong role in caste development among bees.

A female bee can become either a worker or a queen. Queen bees are larger and live longer than workers. Queen bees are also fertile while workers are essentially sterile. A queen has only one role—to lay eggs—while workers tend the hive, care for the queen and larvae, and forage for food.

"The incredible thing is that both of these types of female honeybees emerge from the same genome," says Florian Wolschin, an assistant research professor in the School of Life Sciences in ASU's College of Liberal Arts and Sciences, is the lead author of the study. "So how does that happen?"

Workers determine the fate of the larvae by what they feed them. The amount and composition of food that the larvae receive determine whether they become workers or queens. People have known this for many years, but exactly what happens inside the cells to create this split isn't completely clear.

Wolschin, Gro Amdam, an associate professor, and Navdeep S. Mutti, a postdoctoral research associate, found that the insulin signaling pathway plays a role in caste development. Insulin is a hormone found in humans and many other animals, and insulin-like peptides have been discovered in bees. Insulin moves glucose—sugar—from the bloodstream into the body's cells where it can be used.

The researchers suppressed one of the key proteins in this pathway in honeybee larvae. The protein, called the insulin receptor substrate (IRS), has been linked to growth, development and reproduction in mice. The researchers fed the altered larvae a queen's diet, but they developed into workers, not queens.

IRS is only one component of the process that decides a bee's ultimate fate. Wolschin says several other molecules are known to play a role, including DNA methyltransferase, juvenile hormone and a protein called TOR.

"Those are all very important and fundamental mechanisms," says Wolschin. "One single part cannot alone be responsible. It has to be the interplay between different mechanisms that finally results in the divergence of queens and workers."

The researchers are now looking at the interconnections between several of these factors. "We want to see if maybe there's a hierarchy involved. Several of the components are probably 'upstream' of other processes. So they serve as mass regulators and switches," says Wolschin.

Honeybees are vitally important to our economy through pollination of crops as well as production of honey, wax and royal jelly. Understanding bee biology is crucial to maintaining this industry in the face of problems like colony collapse disorder.

Wolschin adds that bees also provide an important model system that can help us understand our own biology. For example, scientists have successfully reversed many signs of aging in worker bees.

"That is pretty unique," says Wolschin. "You don't have other model organisms in aging research that can do that."

Read the full study at: http://rsbl.royalsocietypublishing.org/content/early/2010/06/28/rsbl.2010.0463.full?sid=7539bb48-6a05-4618-b38c-eecaead0135a

Margaret Coulombe | EurekAlert!
Further information:
http://www.asu.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>