Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insulin signaling key to caste development in bees

15.07.2010
What makes a bee grow up to be a queen? Scientists have long pondered this mystery.

Now, researchers in the School of Life Sciences at Arizona State University have fit a new piece into the puzzle of bee development. Their work not only adds to understanding about bees, but also adds insights into our own development and aging.

The study, which appeared in the June 30 online edition of Biology Letters, shows that a key protein in the insulin signaling pathway plays a strong role in caste development among bees.

A female bee can become either a worker or a queen. Queen bees are larger and live longer than workers. Queen bees are also fertile while workers are essentially sterile. A queen has only one role—to lay eggs—while workers tend the hive, care for the queen and larvae, and forage for food.

"The incredible thing is that both of these types of female honeybees emerge from the same genome," says Florian Wolschin, an assistant research professor in the School of Life Sciences in ASU's College of Liberal Arts and Sciences, is the lead author of the study. "So how does that happen?"

Workers determine the fate of the larvae by what they feed them. The amount and composition of food that the larvae receive determine whether they become workers or queens. People have known this for many years, but exactly what happens inside the cells to create this split isn't completely clear.

Wolschin, Gro Amdam, an associate professor, and Navdeep S. Mutti, a postdoctoral research associate, found that the insulin signaling pathway plays a role in caste development. Insulin is a hormone found in humans and many other animals, and insulin-like peptides have been discovered in bees. Insulin moves glucose—sugar—from the bloodstream into the body's cells where it can be used.

The researchers suppressed one of the key proteins in this pathway in honeybee larvae. The protein, called the insulin receptor substrate (IRS), has been linked to growth, development and reproduction in mice. The researchers fed the altered larvae a queen's diet, but they developed into workers, not queens.

IRS is only one component of the process that decides a bee's ultimate fate. Wolschin says several other molecules are known to play a role, including DNA methyltransferase, juvenile hormone and a protein called TOR.

"Those are all very important and fundamental mechanisms," says Wolschin. "One single part cannot alone be responsible. It has to be the interplay between different mechanisms that finally results in the divergence of queens and workers."

The researchers are now looking at the interconnections between several of these factors. "We want to see if maybe there's a hierarchy involved. Several of the components are probably 'upstream' of other processes. So they serve as mass regulators and switches," says Wolschin.

Honeybees are vitally important to our economy through pollination of crops as well as production of honey, wax and royal jelly. Understanding bee biology is crucial to maintaining this industry in the face of problems like colony collapse disorder.

Wolschin adds that bees also provide an important model system that can help us understand our own biology. For example, scientists have successfully reversed many signs of aging in worker bees.

"That is pretty unique," says Wolschin. "You don't have other model organisms in aging research that can do that."

Read the full study at: http://rsbl.royalsocietypublishing.org/content/early/2010/06/28/rsbl.2010.0463.full?sid=7539bb48-6a05-4618-b38c-eecaead0135a

Margaret Coulombe | EurekAlert!
Further information:
http://www.asu.edu

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>