Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New insights come from tracing cells that scar lungs

Tracking individual cells within the lung as they move around and multiply has given Duke University researchers new insights into the causes of Idiopathic Pulmonary Fibrosis (IPF) a disease which can only be treated now by lung transplantation.

IPF fills the delicate gas exchange region of the lung with scar tissue, progressively restricting breathing. The Duke University Medical Center researchers have discovered that some commonly held ideas about the origins of the scar-forming (fibrotic) cells are oversimplified, if not wrong.

“We are the first to show that pericytes, a population of cells previously described to play a role in the development of fibrosis in other organs, are present in fibrotic lung tissue,” said Christina Barkauskas, M.D., a pulmonary fellow in the Duke Division of Pulmonary, Allergy and Critical Care Medicine.

The team found that pericytes move from blood vessels into fibrotic regions, and were in the damaged lungs of both humans and mice. In mice, they also showed that the epithelial cells, which make up the lacy sacs called alveoli, could divide and repair the damage in the gas-exchange location, but these cells were not the source of scarring.

Idiopathic pulmonary fibrosis affects about 100,000 people in the U.S. each year and leads to death within three years of diagnosis.

The study was published the week of Nov. 28 in PNAS Plus online edition.

“We don’t know yet whether the pericytes make the scar matrix itself or just release signals that stimulate the scarring process, but either way, they are a potential target for new therapies,” said Brigid Hogan, Ph.D., senior author and chair of the Duke Department of Cell Biology.

The researchers used genetic lineage tracing to study the origin of cells that gathered in fibrotic areas. They gave several different cell types an indelible fluorescent tag and then followed the cells over time.

The cells kept the tag even if they multiplied, migrated within the lung, or differentiated into another cell type.

Paul Noble, M.D., co-author and chief of the Pulmonary Division at Duke, said that identifying the source of the lethal expansion of the scarring (fibroblast) cells is a critical missing link in understanding disease progression.

Previous studies had suggested that the epithelial cells in the alveoli are a source of fibroblast accumulation after lung injury, he said.

“This study used the newest tracing approaches to conclusively demonstrate, however, that the alveolar epithelium isn’t a significant source for fibroblast accumulation following lung injury in mice,” Noble said. “The studies suggest that there may be several sources for the scar-forming cell accumulation in fibrosis, including pericytes, which hadn’t been implicated in lung fibrosis until now.”

Noble said that the study data provide new insights into the sources of scar-forming cells and would help to target the correct cell population that causes disease progression.

Now the researchers are focusing on what these cells may make that could promote a healing process. “One idea is that perhaps in IPF these epithelial cells have lost the ability to repair damage to the lung, so that scarring continues inexorably and cannot be restrained – perhaps we could find a way to assist the repair process,” Hogan said. “Promoting the healing process might be another therapeutic approach.”

Other authors include Jason R. Rock and Yan Xue of the Duke Department of Cell Biology; Michael J. Cronce and Jiurong Liang of the Duke Division of Pulmonary, Allergy and Critical Care Medicine; and Jeffrey R. Harris of the Duke Division of Cellular Therapy. Jason Rock is now with the University of California -- San Francisco.

Mary Jane Gore | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>