Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Insights Into Cardiac Aging

16.09.2009
Investigators at Burnham Institute for Medical Research (Burnham) have found that the conserved protein d4eBP modulates cardiac aging in Drosophila (fruit flies).

The team also found that d4eBP, which binds to the protein dEif4e, protects heart function against aging. This research enhances our understanding of the TOR and FoxO signaling pathways and provides a more specific target for further research into cardiac aging. Since the TOR and FoxO genes are conserved between Drosophila and humans, this work may lead to new, tissue-specific methods to protect the heart. The paper was published in the journal Aging Cell.

Much research has shown that altering the expression of specific genes can extend the lifespan of various organisms. Overexpression of dFoxO and reduced expression of dTOR both work to extend Drosophila lifespan. However, researchers needed to investigate the mechanisms behind these pathways, as well as how these signaling pathways influence aging in specific tissues, in this case the heart.

“The relationships between these genes are very complex,” said Rolf Bodmer, Ph.D., who directs Burnham’s Development and Aging Program. “We wanted to analyze how two opposing genes function and control their downstream effectors, and we wanted to understand how these aging factors apply to a specific organ.”

The Bodmer laboratory, in collaboration with the laboratory of Sean Oldham, Ph.D., an expert in TOR signaling, altered the expression levels of dTOR pathway components in heart tissue and tested the hearts’ stress response. Increased dTOR activation resulted in higher failure rates, while reductions in dTOR activity promoted more youthful hearts. Noting that upregulated dFoxO and downregulated dTOR lead to similar consequences, the laboratory looked for downstream factors that were influenced by both pathways. One possibility was d4eBP, which reduces messenger RNA translation by binding to dEif4e. The team found that increased d4eBP levels produced the same healthier hearts as decreased dTOR activity, while increased dEif4e levels resulted in higher failure rates.

The team also showed that when dTOR and its antagonistic effecter d4eBP were co-expressed, the hearts did not differ significantly from when d4eBP was expressed by itself, indicating that there is a straight signaling path from dTOR to d4eBP/dEif4e. These new findings also introduce the interesting biological concept that changes in (TOR-dependent) mRNA translation factors (d4eBP and dEif4e) influence the age-dependent functional performance of the heart.

About Burnham Institute for Medical Research
Burnham Institute for Medical Research is dedicated to discovering the fundamental molecular causes of disease and devising the innovative therapies of tomorrow. Burnham, with operations in California and Florida, is one of the fastest-growing research institutes in the country. The institute ranks among the top four institutions nationally for NIH grant funding and among the top 25 organizations worldwide for its research impact. For the past decade (1999-2009), Burnham ranked first worldwide in the fields of biology and biochemistry for the impact of its research publications (defined by citations per publication), according to the Institute for Scientific Information.

Burnham utilizes a unique, collaborative approach to medical research and has established major research programs in cancer, neurodegeneration, diabetes, and infectious, inflammatory, and childhood diseases. The Institute is especially known for its world-class capabilities in stem cell research and drug discovery technologies. Burnham is a nonprofit public benefit corporation.

Josh Baxt | EurekAlert!
Further information:
http://www.burnham.org/default.asp?contentID=781
http://www.burnham.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>