Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Insights Into Cardiac Aging

16.09.2009
Investigators at Burnham Institute for Medical Research (Burnham) have found that the conserved protein d4eBP modulates cardiac aging in Drosophila (fruit flies).

The team also found that d4eBP, which binds to the protein dEif4e, protects heart function against aging. This research enhances our understanding of the TOR and FoxO signaling pathways and provides a more specific target for further research into cardiac aging. Since the TOR and FoxO genes are conserved between Drosophila and humans, this work may lead to new, tissue-specific methods to protect the heart. The paper was published in the journal Aging Cell.

Much research has shown that altering the expression of specific genes can extend the lifespan of various organisms. Overexpression of dFoxO and reduced expression of dTOR both work to extend Drosophila lifespan. However, researchers needed to investigate the mechanisms behind these pathways, as well as how these signaling pathways influence aging in specific tissues, in this case the heart.

“The relationships between these genes are very complex,” said Rolf Bodmer, Ph.D., who directs Burnham’s Development and Aging Program. “We wanted to analyze how two opposing genes function and control their downstream effectors, and we wanted to understand how these aging factors apply to a specific organ.”

The Bodmer laboratory, in collaboration with the laboratory of Sean Oldham, Ph.D., an expert in TOR signaling, altered the expression levels of dTOR pathway components in heart tissue and tested the hearts’ stress response. Increased dTOR activation resulted in higher failure rates, while reductions in dTOR activity promoted more youthful hearts. Noting that upregulated dFoxO and downregulated dTOR lead to similar consequences, the laboratory looked for downstream factors that were influenced by both pathways. One possibility was d4eBP, which reduces messenger RNA translation by binding to dEif4e. The team found that increased d4eBP levels produced the same healthier hearts as decreased dTOR activity, while increased dEif4e levels resulted in higher failure rates.

The team also showed that when dTOR and its antagonistic effecter d4eBP were co-expressed, the hearts did not differ significantly from when d4eBP was expressed by itself, indicating that there is a straight signaling path from dTOR to d4eBP/dEif4e. These new findings also introduce the interesting biological concept that changes in (TOR-dependent) mRNA translation factors (d4eBP and dEif4e) influence the age-dependent functional performance of the heart.

About Burnham Institute for Medical Research
Burnham Institute for Medical Research is dedicated to discovering the fundamental molecular causes of disease and devising the innovative therapies of tomorrow. Burnham, with operations in California and Florida, is one of the fastest-growing research institutes in the country. The institute ranks among the top four institutions nationally for NIH grant funding and among the top 25 organizations worldwide for its research impact. For the past decade (1999-2009), Burnham ranked first worldwide in the fields of biology and biochemistry for the impact of its research publications (defined by citations per publication), according to the Institute for Scientific Information.

Burnham utilizes a unique, collaborative approach to medical research and has established major research programs in cancer, neurodegeneration, diabetes, and infectious, inflammatory, and childhood diseases. The Institute is especially known for its world-class capabilities in stem cell research and drug discovery technologies. Burnham is a nonprofit public benefit corporation.

Josh Baxt | EurekAlert!
Further information:
http://www.burnham.org/default.asp?contentID=781
http://www.burnham.org

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>