Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insight into the controls on a go-to enzyme

24.11.2008
St. Jude scientists report basic findings on critical enzyme’s regulation may hold key to understanding how to better treat an array of disorders

Scientists at St. Jude Children's Research Hospital have gained new insights into regulation of one of the body's enzyme workhorses called calpains.

As the cell's molecular overachievers, calpains function in many cellular processes, including the movement of cells in tissues, the death of damaged cells, insulin secretion, and brain cell and muscle function.

The downside of this broad set of responsibilities is that defective or overactive calpains have been linked to an array of disorders, including a form of muscular dystrophy, Type 2 diabetes, gastric cancers, Alzheimer's and Parkinson's diseases, cataracts, and the death of both heart muscle in heart attacks and of brain tissue in stroke and traumatic brain injury.

"Our basic findings on calpain regulation could add useful pieces to the puzzles of these disorders and perhaps reveal targets for drugs to treat them," said Douglas Green, Ph.D., chair of the St. Jude Department of Immunology.

Calpains are triggered by calcium flowing into the cell. This process induces the enzyme to snip apart many target proteins, as part of the cell's regulatory machinery. However, such a critical enzyme needs ultra-precise control, which is the job of another protein called calpastatin. A central question has been how calpastatin is so exquisitely specific in attaching to calpain and inhibiting it—essentially ignoring other highly similar enzymes in the cell.

In an article published in the November 20, 2008, issue of the journal Nature, Green and his colleagues report new information on the specificity of calpastatin.

"Previous studies on calpastatin had revealed how a few of the parts of the calpastatin molecule attach to calpain in the inhibition process," said Green, the report's senior author. "However, there was no overall picture of calpastatin that revealed how it was so precise in its attachment and potent in its function."

To obtain that overall picture, St. Jude researchers used the analytical technique of X-ray crystallography, with help from nuclear magnetic resonance (NMR) spectroscopy. In this widely used method of determining protein structure, researchers first crystallize a protein to be studied. Then, they direct X-rays through the crystal and deduce the protein structure from the diffraction pattern of those X-rays. To overcome the crystallization bottleneck, a lengthy and unpredictable variable in X-ray crystallography, the investigators used NMR spectroscopy to tailor the perfect enzyme-inhibitor complex.

Tudor Moldoveanu, Ph.D., a postdoctoral fellow in Green's laboratory, performed X-ray structural analysis on such a protein crystal that consisted of a critical part of the calpastatin molecule attached to calpain. The structural picture obtained of the two proteins clutched together clearly revealed why calpastatin so specifically attaches to calpain.

"Calpain has multiple domains, and what we saw was that calpastatin wraps itself around pretty much every domain of calpain," said Moldoveanu, the report's first author. This attachment not only blocks the portion of the enzyme called the active site, where calpain performs its snipping function, but also covers regions away from that site. Such a broad molecular embrace guarantees that calpastatin will potently and rapidly shut down calpain's function, Moldoveanu said. This broad embrace also guarantees that calpastatin will precisely recognize only calpains, rather than mistakenly attach to other similar enzymes in the cell.

Furthermore, the researchers discovered how calpastatin evades being chewed up by calpain. Calpastatin's survival enables it to be repeatedly recycled to inhibit calpain, making it an even more effective regulator.

The researchers' structural information also showed how calpain changes its shape once it is activated by calcium and how this transformation renders it a target of calpastatin attachment and thus inhibition.

"This new structural information on calpastatin and on calpain's conformational changes not only explains a lot about calpain's regulation," Green said. "It also gives us information we can use to develop targets for drugs that could either activate or inhibit calpain."

Summer Freeman | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>