Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insects have personalities too, research on honey bees indicates

09.03.2012
A new study in Science suggests that thrill-seeking is not limited to humans and other vertebrates. Some honey bees, too, are more likely than others to seek adventure. The brains of these novelty-seeking bees exhibit distinct patterns of gene activity in molecular pathways known to be associated with thrill-seeking in humans, researchers report.

The findings offer a new window on the inner life of the honey bee hive, which once was viewed as a highly regimented colony of seemingly interchangeable workers taking on a few specific roles (nurse or forager, for example) to serve their queen.

Now it appears that individual honey bees actually differ in their desire or willingness to perform particular tasks, said University of Illinois entomology professor and Institute for Genomic Biology director Gene Robinson, who led the study. These differences may be due, in part, to variability in the bees’ personalities, he said.

“In humans, differences in novelty-seeking are a component of personality,” he said. “Could insects also have personalities?”

Robinson and his colleagues studied two behaviors that looked like novelty-seeking in honey bees: scouting for nest sites and scouting for food.
When a colony of bees outgrows its living quarters, the hive divides and the swarm must find a suitable new home. At this moment of crisis, a few intrepid bees – less than 5 percent of the swarm – take off to hunt for a hive.

These bees, called nest scouts, are on average 3.4 times more likely than their peers to also become food scouts, the researchers found.

“There is a gold standard for personality research and that is if you show the same tendency in different contexts, then that can be called a personality trait,” Robinson said, who also is affiliated with the Neuroscience Program at Illinois. Not only do certain bees exhibit signs of novelty-seeking, he said, but their willingness or eagerness to “go the extra mile” can be vital to the life of the hive.

The researchers wanted to determine the molecular basis for these differences in honey bee behavior. They used whole-genome microarray analysis to look for differences in the activity of thousands of genes in the brains of scouts and non-scouts.

“People are trying to understand what is the basis of novelty-seeking behavior in humans and in animals,” Robinson said. “And a lot of the thinking has to do with the relationship between how the (brain’s) reward system is engaged in response to some experience.”

The researchers found thousands of distinct differences in gene activity in the brains of scouting and non-scouting bees.

“We expected to find some, but the magnitude of the differences was surprising given that both scouts and non-scouts are foragers,” Robinson said.

Among the many differentially expressed genes were several related to catecholamine, glutamate and gamma-aminobutyric acid (GABA) signaling, and the researchers zeroed in on these because they are involved in regulating novelty-seeking and responding to reward in vertebrates.

To test whether the changes in brain signaling caused the novelty-seeking, the researchers subjected groups of bees to treatments that would increase or inhibit these chemicals in the brain. Two treatments (with glutamate and octopamine) increased scouting in bees that had not scouted before. Blocking dopamine signaling decreased scouting behavior, the researchers found.

“Our results say that novelty-seeking in humans and other vertebrates has parallels in an insect,” Robinson said. “One can see the same sort of consistent behavioral differences and molecular underpinnings.”

The findings also suggest that insects, humans and other animals made use of the same genetic “toolkit” in the evolution of behavior, Robinson said. The tools in the toolkit – genes encoding certain molecular pathways – may play a role in the same types of behaviors, but each species has adapted them in its own, distinctive way.

“It looks like the same molecular pathways have been engaged repeatedly in evolution to give rise to individual differences in novelty-seeking,” he said.
The National Science Foundation, National Institutes of Health and Illinois Sociogenomics Initiative supported this research.

Collaborators on this study included researchers from Wellesley College and Cornell University.

Editor’s notes: To reach Gene Robinson, call 217-202-9130;
email generobi@illinois.edu.
The paper, “Molecular Determinants of Scouting Behavior in Honeybees,” is available from the U. of I. News Bureau.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>