Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Innovation via genetic ‘googling’

Intelligent search engines called PosMed and PosMed-plus make it easier for researchers to identify candidate genes for cloning

Many diseases are caused by genetic mutations. Researchers can use a technique called linkage analysis to identify rough intervals on the chromosome that might have mutated to cause each condition; however, these intervals often contain tens or hundreds of genes.

Rather than laboriously testing each gene, it is useful for researchers to acquire as much knowledge as possible about the condition in question, so that they can narrow down their choice to the most likely candidate genes.

Now, Tetsuro Toyoda and co-workers at RIKEN’s Bioinformatics And Systems Engineering (BASE) division in Yokohama have developed intelligent search engines that can identify candidate genes from huge genetic databases and over 17 million medical and biological documents1,2. The programs could not only help researchers to identify the genes responsible for diseases, but also highlight useful mutations that make crops more robust.

Toyoda explains some of the motivation behind his team’s work: “The RIKEN Genomic Sciences Center promoted a project to generate genetically mutated mice on a large scale. The disadvantage is that the locations of the mutation that confer the phenotypes, such as diseases, were difficult to identify [using] a conventional genetics approach.”

The BASE team worked alongside researchers at RIKEN’s BioResource Center in Ibaraki to develop their search engine, called PosMed (Positional Medline), which accesses vast amounts of information on the genetics of humans, mice and rats. They also collaborated with RIKEN’s Plant Science Center to develop a similar system for plants, called PosMed-plus (Positional Medline for plant upgrading science), which so far includes thale cress (Arabidopsis thaliana) and rice (Oryza sativa).

A researcher using PosMed or PosMed-plus can choose their species of interest, then type in a simple phrase representing a phenotype or function, for example ‘diabetes’ or ‘drought tolerance’. The program then searches through text in existing literature databases and assesses the strength of each gene’s connection to the phenotype in question. It can also highlight other genes that are expressed at the same times or places, or cited in the same papers, and even find similar genes in other species.

“Since the invention of the PosMed system, many mutations have been easily identified, because a researcher can prioritize the genes that need to be investigated with direct sequencing,” says Toyoda.

The researchers hope to add more species to their databases soon. For example, Toyoda says: “Recently we are focusing on plants that are useful for green technologies—to combat climate change.”

The corresponding author for this highlight is based at the RIKEN Bioinformatics And Systems Engineering division

1. Yoshida, Y., Makita, Y., Heida, N., Asano, S., Matsushima, A., Ishii, M., Mochizuki, Y., Masuya, H., Wakana, S., Kobayashi, N. & Toyoda, T. PosMed (Positional Medline): prioritizing genes with an artificial neural network comprising medical documents to accelerate positional cloning. Nucleic Acids Research 37, W147–W152 (2009).

2. Makita, Y., Kobayashi, N., Mochizuki, Y., Yoshida, Y., Asano, S., Heida, N., Deshpande, M., Bhatia, R., Matsushima, A., Ishii, M. et al. PosMed-plus: an intelligent search engine that inferentially integrates cross-species information resources for molecular breeding of plants. Plant Cell Physiology 50, 1249–1259 (2009).

Saeko Okada | Research asia research news
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>