Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovation via genetic ‘googling’

05.10.2009
Intelligent search engines called PosMed and PosMed-plus make it easier for researchers to identify candidate genes for cloning

Many diseases are caused by genetic mutations. Researchers can use a technique called linkage analysis to identify rough intervals on the chromosome that might have mutated to cause each condition; however, these intervals often contain tens or hundreds of genes.

Rather than laboriously testing each gene, it is useful for researchers to acquire as much knowledge as possible about the condition in question, so that they can narrow down their choice to the most likely candidate genes.

Now, Tetsuro Toyoda and co-workers at RIKEN’s Bioinformatics And Systems Engineering (BASE) division in Yokohama have developed intelligent search engines that can identify candidate genes from huge genetic databases and over 17 million medical and biological documents1,2. The programs could not only help researchers to identify the genes responsible for diseases, but also highlight useful mutations that make crops more robust.

Toyoda explains some of the motivation behind his team’s work: “The RIKEN Genomic Sciences Center promoted a project to generate genetically mutated mice on a large scale. The disadvantage is that the locations of the mutation that confer the phenotypes, such as diseases, were difficult to identify [using] a conventional genetics approach.”

The BASE team worked alongside researchers at RIKEN’s BioResource Center in Ibaraki to develop their search engine, called PosMed (Positional Medline), which accesses vast amounts of information on the genetics of humans, mice and rats. They also collaborated with RIKEN’s Plant Science Center to develop a similar system for plants, called PosMed-plus (Positional Medline for plant upgrading science), which so far includes thale cress (Arabidopsis thaliana) and rice (Oryza sativa).

A researcher using PosMed or PosMed-plus can choose their species of interest, then type in a simple phrase representing a phenotype or function, for example ‘diabetes’ or ‘drought tolerance’. The program then searches through text in existing literature databases and assesses the strength of each gene’s connection to the phenotype in question. It can also highlight other genes that are expressed at the same times or places, or cited in the same papers, and even find similar genes in other species.

“Since the invention of the PosMed system, many mutations have been easily identified, because a researcher can prioritize the genes that need to be investigated with direct sequencing,” says Toyoda.

The researchers hope to add more species to their databases soon. For example, Toyoda says: “Recently we are focusing on plants that are useful for green technologies—to combat climate change.”

The corresponding author for this highlight is based at the RIKEN Bioinformatics And Systems Engineering division

1. Yoshida, Y., Makita, Y., Heida, N., Asano, S., Matsushima, A., Ishii, M., Mochizuki, Y., Masuya, H., Wakana, S., Kobayashi, N. & Toyoda, T. PosMed (Positional Medline): prioritizing genes with an artificial neural network comprising medical documents to accelerate positional cloning. Nucleic Acids Research 37, W147–W152 (2009).

2. Makita, Y., Kobayashi, N., Mochizuki, Y., Yoshida, Y., Asano, S., Heida, N., Deshpande, M., Bhatia, R., Matsushima, A., Ishii, M. et al. PosMed-plus: an intelligent search engine that inferentially integrates cross-species information resources for molecular breeding of plants. Plant Cell Physiology 50, 1249–1259 (2009).

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6046
http://www.researchsea.com

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>