Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When injured muscles mistakenly grow bones

21.07.2011
Researchers discover brain chemical that causes strange, serious complication

For hundreds of thousands of people, injuring a muscle through an accident like falling off a bike or having surgery can result in a strange and serious complication. Their muscles start growing bones.

No one understood what caused the abnormal bone growth, so there was no treatment. But now, research from Northwestern University Feinberg School of Medicine and the Perelman School of Medicine at the University of Pennsylvania shows that a neuropeptide in the brain called Substance P appears to trigger the formation of the extraskeletal bone. Eliminating Substance P prevents the bone growth.

The discovery -– in human and animal tissues -- offers a molecular target for drugs to potentially prevent and treat the abnormal bone growth, which is called heterotopic ossification.

"Patients who have it become very uncomfortable, and there is no way to make it go away," said Jack Kessler, M.D., chair of neurology at Northwestern's Feinberg School, a neurologist at Northwestern Memorial Hospital and the senior author of the paper, which was published in the Journal of Cellular Biochemistry. "This explains why it happens and gives us a way to develop a therapy to potentially treat it."

Lixin Kan, research associate professor at Feinberg and lead author of the paper, found that Substance P is dramatically increased in newly damaged tissue of patients who have the more common heterotopic ossification as well as a rarer and debilitating genetic disease. In the genetic disease, connective tissue begins to ossify and turn into bone. It's called fibrodysplasia ossificans progressiva (FOP).

In the paper, Kan reports that knocking out Substance P in animals prevented the development of the extraskeletal bone in an animal model.

"This work establishes a common mechanism underlying lesion induction for nearly all forms of heterotopic ossification including brain and spinal cord injury, peripheral nerve injury, athletic injury, total hip replacement and FOP," said paper co-author Frederick Kaplan, the Isaac & Rose Nassau Professor of Orthopaedic Molecular Medicine at Penn's Perelman School. "These novel findings usher in a new era in understanding of these complex disorders."

Marla Paul | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>