Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inhibitors of infamous Ras oncogene reported by Genentech researchers at ASCB annual meeting

05.12.2011
Making the 'undruggable' Ras oncogene 'druggable'

A drug discovery team at Genentech, Inc., has uncovered a chink in the molecular armor of Ras, the most commonly occurring oncogene, which is a gene that when mutated has the potential of causing cancer in humans.

The chink, binding pocket of "functional significance" on the Ras oncoprotein could provide the long-sought attack point for a therapeutic agent, making the "undruggable" Ras oncogene "druggable," the researchers reported at the American Society for Cell Biology's 51st Annual Meeting in Denver.

The first human oncogene to be identified, Ras is mutated in about 25% of all human tumors. For cancer patients, the presence of an activated Ras oncogene is a poor prognosis marker.

Ras has a molecular on-off switch, activated by the energy transfer molecule GTP. In the "on" position, the oncogene activates critical cell signaling pathways involving cell proliferation, cell migration and cell differentiation, all of which are in hyper-drive in tumors.

To develop a drug that would switch off Ras, scientists needed a binding site, an opening in the Ras oncoprotein to which the docking mechanism of a therapeutic molecule could attach.

At the ASCB meeting, Joachim Rudolph, Ph.D., Weiru Wang, Ph.D., and Guowei Fang, Ph.D., of Genentech, a member of the Roche Group, reported that they identified such a binding pocket by fragment-based lead discovery, a screening process that sorted through 3,300 small molecule compounds. Nuclear magnetic resonance (NMR) spectroscopy was used to pinpoint molecules with even a weak affinity for binding to Ras oncoproteins. The researchers identified 25 compounds, none of which knocked out the oncoprotein.

However, NMR spectroscopy revealed that the 25 compounds were binding to the same location on the Ras oncoprotein. The researchers determined that the binding pocket was not static but could be enlarged once the ligand from the small molecule engaged it, providing researchers an opening for engineering the next generation of compounds.

Fang said that even the weak ligands formed by these compounds interfered with the Ras oncoprotein by blocking an enzyme, abbreviated SOS, that is required for activating the oncoprotein.

"The small molecules identified here represent the first generation of Ras inhibitors that directly prevent Ras activation," Fang said.

CONTACT:

Guowei Fang, Ph.D. Genentech, Inc. Fang.guowei@gene.com 650-228-8497

Robin Snyder, Ph.D. Director, External Communications Genentech Corporate Relations 650.467.7152 snyder.robin@gene.com

John Fleischman American Society for Cell Biology jfleischman@ascb.org 513-929-4635 513-706-0212 (cell)

Cathy Yarbrough American Society for Cell Biology sciencematter@yahoo.com 858-243-1814

AUTHOR PRESENTS:

Sunday, Dec. 4, 2011 5:35 to 5:55 p.m. Minisymposium: Chemical Biology: Probes and Therapeutics Presentation 24

John Fleischman | EurekAlert!
Further information:
http://www.ascb.org

Further reports about: ASCB Genentech Inhibitors NMR cell death signaling pathway synthetic biology

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>