Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


In times of great famine, microalgae digest themselves


AWI researchers decipher the connection between nutrient availability and algae growth

In a recent study, scientists of the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have determined the molecular mechanisms which microalgae apply in order to switch from rapid cell division to growth-arrest during times of acute nutrient deficiency.

Emiliania huxleyi

Photo: C. Hoppe / Alfred-Wegener-Institut

In laboratory experiments, the scientists have been able to observe that calcifying microalgae in a state of nutrient deficiency initially tweak their metabolism to be more economic and efficient before, out of necessity, they even partially digest themselves.

The molecular switches for these basic functions of cells are strikingly similar in all living things. Apparently, it is these switches, which, when malfunctioning in humans, cause cells to lose control of their division activity and potentially become cancer cells. The new findings are being published online this week in the journal Frontiers in Marine Science.

"Like all living things, algae depend on the nutrients phosphorus and nitrogen, which are introduced into coastal areas by rivers, or -in the open ocean- are carried up from depth by eddies. If the surface water is fertilized by such nutrients, a race for the precious elements begins in which the various algae compete for the nutrients.

This race only ends when the nutrients which are necessary for cell division are exhausted and the algae are suddenly facing a famine situation," explains Dr Sebastian Rokitta, AWI biologist and lead author of the current study.

Because the algae apparently react differently to the lack of various nutrients, scientists have long assumed that the single-celled organisms take several different countermeasures to efficiently accommodate for each missing nutrients. However, past studies on this subject have often neglected one important aspect: the molecular machinery of the cells.

Usually, the uptake mechanisms for the lacking nutrients, as well as the biomass and lime production of algae have been studied under starvation conditions. A holistic ‘screening’ of many cellular functions at the same time was previously only possible to a very limited extent. "Only recently, genomic sequence data became available for the most common microalgae in the world, Emiliania huxleyi, so we can finally make effective use of our molecular toolbox," explains AWI microbiologist and co-author Dr Uwe John.

By using so-called microarrays, the scientists have been able to simultaneously observe the activity of more than 10,000 genes under different hunger scenarios. The new results show that the genetic programs which run in different hunger situations are largely the same in terms of arresting the cell division and are only slightly modified, depending on the particularly lacking nutrient, e.g., to switch on specific transporters and storage mechanisms. This strategy is very useful for the algae, since it greatly simplifies the management of the complex cellular apparatus.

What is striking, is the close integration of nutrient availability and cellular energy supply in the algal metabolism. "Apparently, the triggered genetic programs also include molecular sensors that stop the cell division, so to speak, in case of low nutrient levels", says the AWI biologist Dr Björn Rost, who was also involved in the study. This mechanism is known to be disturbed, for example, in human cancer cells, accordingly signalling them to continue cellular division and proliferation. Thus, the study also underlines that the molecular mechanisms that control cell division, and which evolved in the early phase of life about 2 billion years ago are still operative.

The research results also demonstrate that, in the case of ongoing life-threatening nutrient starvation, the microalgae begin to 'digest' their own cellular components, to ensure their survival as long as possible.

They cannot maintain this process for very long, though. All those cells that destroy themselves through this emergency measure then unintentionally make their nutrient-containing components available to other algae as well as to their conspecifics. This previously underestimated process seems to favour the long-term evolution of particularly frugal and self-sustaining individuals and is certainly partly responsible for the robustness and resilience of microalgae in the face of nutritional deficiencies.

In the coming years, Sebastian Rokitta and his colleagues will continue to investigate how different species of algae react when their habitat is changed; which types benefit and which suffer. However, the focus of the AWI scientists will then be on the phytoplankton of the North Atlantic and the Arctic Ocean.

Notes for Editors:
The study has been published online under the following title in the journal Frontiers in Marine Science:
Sebastian D. Rokitta, Peter von Dassow, Björn Rost, Uwe John: P- and N-depletion trigger similar cellular responses to promote senescence in eukaryotic phytoplankton (2016). Frontiers in Marine Science, doi: 10.3389/fmars.2016.00109, Link:

Printable photographs can be found in the online version of this press release at:

Your scientific contacts at the Alfred Wegener Institute are:
• Dr Sebastian Rokitta (Tel: +49 (0)471 4831-2096; e-mail: Sebastian.Rokitta(at)
• Dr Björn Rost (Tel.: +49 (0)471 4831-1809; e-mail: Björn.Rost(at)

Your contact in the Communications and Media Department is Sina Löschke (Tel.: +49 (0)471 4831-2008; E-mail: medien(at)

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) conducts research in the Arctic, Antarctic and oceans of the high and mid-latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>