Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Important fertility mechanism discovered

24.04.2013
Plasma protein fetuin-B regulates hardening of the zona pellucida and thus ensures the fertilization capacity of the ovum

Scientists in Mainz and Aachen have discovered a new mechanism that controls egg cell fertility and that might have future therapeutic potential. It was revealed by Professor Dr. Walter Stöcker of the Institute of Zoology at Johannes Gutenberg University Mainz (JGU) that the blood protein fetuin-B plays an important and previously unknown role in the fertilization of oocytes.


Oocyte fertilization with and without fetuin-B
Ill.: Walter Stöcker

Fetuin-B, first identified in the year 2000, is formed in the liver and secreted into the blood stream. During a joint research project with researchers at RWTH Aachen University headed by Professor Dr. Willi Jahnen-Dechent of the Helmholtz Institute for Biomedical Engineering, it was discovered that fetuin-B contributes to egg cell fertility by regulating the hardening of the protective zona pellucida of oocytes. The findings have recently been published in the scientific journal Developmental Cell.

The scientists at Aachen discovered that female mice lacking fetuin-B were infertile even though their ovaries developed normally. But fertility was restored when their ovaries were transplanted in wild-type mice with normal fetuin-B production. "This demonstrates that it was not the ovaries themselves but the plasma protein fetuin-B that determined whether the mice were fertile or not," explained Stöcker.

The role played by the plasma protein fetuin-B was decoded in cooperation with the team in Aachen. The mechanism appears to operate as follows: The oocytes of humans and other mammals are surrounded by a protective envelope called the zona pellucida. This envelope hardens immediately after the successful fertilization of the egg cell by a sperm, which means that subsequent sperm are unable to penetrate the ovum, thus preventing multiple fertilization (polyspermy). Polyspermy results in the death of the embryo in many mammals. The hardening of the zona pellucida is triggered by the proteolytic enzyme ovastacin, the function of which Stöcker's team in Mainz has been investigating. The protease ovastacin is stored in vesicles within the egg cell and when the first sperm penetrates the ovum, the protease is explosively discharged into the gap between the egg cell and the zona pellucida in what is known as the cortical reaction.

However, small amounts of ovastacin continually seep from unfertilized egg cells and this would cause the zona to harden before the first sperm can penetrate. "It is the role of fetuin-B to ensure that these constantly escaping small quantities of ovastacin are inactivated so that oocytes can be fertilized," Stöcker added. "However, once a sperm has penetrated an egg cell, the cortical reaction will be unleashed and the amount of ovastacin will overwhelm the inhibition capacity of fetuin-B and initiate the hardening process."

This is the first time that it has been shown that premature hardening of the zona pellucida can be a cause of infertility. It is thus possible that this could represent the basis for the development of future forms of infertility treatment.

Image:
http://www.uni-mainz.de/bilder_presse/10_zoology_fetuin-b.jpg
Oocyte fertilization with and without fetuin-B
ill.: Walter Stöcker, Institute of Zoology, JGU

Publication:
Eileen Dietzel, Jennifer Wessling et al.
Fetuin-B, a Liver-Derived Plasma Protein Is Essential for Fertilization
Developmental Cell, 4 April 2013, DOI: 10.1016/j.devcel.2013.03.001
http://www.cell.com/developmental-cell/abstract/S1534-5807%2813%2900132-9

Contact and further information:
Professor Dr. Walter Stöcker
Cell and Matrix Biology
Institute of Zoology
Johannes Gutenberg University Mainz (JGU)
D 55099 Mainz, GERMANY
phone +49 6131 39-24273
fax +49 6131 39-23835
e-mail: stoecker@uni-mainz.de
http://www.bio.uni-mainz.de/zoo/stoecker/

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/presse/16332_ENG_HTML.php

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>