Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging dynamics of small biomolecules inside live cells

03.03.2014

Columbia researchers develop a general optical imaging platform to examine activities of a broad range of small biomolecules in living cells and animals

Researchers at Columbia University have made a significant step toward visualizing small biomolecules inside living biological systems with minimum disturbance, a longstanding goal in the scientific community. In a study published March 2nd in Nature Methods, Assistant Professor of Chemistry Wei Min's research team has developed a general method to image a broad spectrum of small biomolecules, such as small molecular drugs and nucleic acids, amino acids, lipids for determining where they are localized and how they function inside cells.

When studying biological functions of a molecule in complex and mysterious cells, researchers typically label the molecules of interest with fluorophores, a kind of molecules that glow when illuminated. Using a fluorescence microscope, common in research labs, the fluorophore-tagged molecules can be located and tracked with high precision. The invention of green fluorescent protein (GFP), in 1994, compatible with imaging inside live cells and animals, has since made fluorescence microscopy even more popular.

However, when it comes to small biomolecules, fluorophore tagging is problematic, because the fluorophores are almost always larger or comparable in size to the small molecules of interest. As a result, they often disturb the normal functions of these small molecules with crucial biological roles.

To address this problem, Min and his team departed from the conventional paradigm of fluorescence imaging of fluorophores, and pursued a novel combination of physics and chemistry. Specifically, they coupled an emerging laser-based technique called stimulated Raman scattering (SRS) microscopy with a small but highly vibrant alkyne tag (that is, C=C, carbon-carbon triple bond), a chemical bond that, when it stretches, produces a strong Raman scattering signal at a unique "frequency" (different from natural molecules inside cells).

This new technique, labeling the small molecules with this tiny alkyne tag, avoids perturbation that occurs with large fluorescent tags, while obtaining high detection specificity and sensitivity by SRS imaging. By tuning the laser colors to the alkyne frequency and quickly scanning the focused laser beam across the sample, point-by-point, SRS microscopy can pick up the unique stretching motion of the C=C bond carried by the small molecules and produce a three-dimensional map of the molecules inside living cells and animals. In this way, Min's team demonstrated tracking alkyne-bearing drugs in mouse tissues and visualizing de novo synthesis of DNA, RNA, proteins, phospholipids and triglycerides through metabolic incorporation of alkyne-tagged small precursors in living cells (see Figure).

"The major advantages of our technique lie in the superb sensitivity, specificity and biocompatibility with dynamics of live cells and animals for small molecule imaging," says the lead author Lu Wei, a Ph.D. candidate in chemistry.

Next, Min's team will apply this new technique to biomedical questions, such as detecting tumor cells and probing drug pharmacokinetics in animal models. They are also creating other alkyne-labeled biologically active molecules for more versatile imaging applications.

"Our new technique will open up numerous otherwise difficult studies on small biomolecules in live cells and animals", says Min. "In addition to basic research, our technique could also contribute greatly to translational applications. I believe SRS imaging of alkyne tags could do for small biomolecules what fluorescence imaging of fluorophores such as GFP has done for larger species."

Beth Kwon | EurekAlert!

Further reports about: GFP SRS acids alkyne animals biomolecules drugs fluorescence fluorescent fluorophores inside sensitivity

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>