Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human sperm created from embryonic stem cells

09.07.2009
Human sperm have been created using embryonic stem cells for the first time in a scientific development which will lead researchers to a better understanding of the causes of infertility.

Researchers led by Professor Karim Nayernia at Newcastle University and the NorthEast England Stem Cell Institute (NESCI) have developed a new technique which has made the creation of human sperm possible in the laboratory.

The work is published today (8th July 2009) in the academic journal Stem Cells and Development.

The NorthEast England Stem Cell Institute (NESCI) is a collaboration between Newcastle and Durham Universities, Newcastle NHS Foundation Trust and other partners.

Professor Nayernia says: "This is an important development as it will allow researchers to study in detail how sperm forms and lead to a better understanding of infertility in men – why it happens and what is causing it. This understanding could help us develop new ways to help couples suffering infertility so they can have a child which is genetically their own."

"It will also allow scientists to study how cells involved in reproduction are affected by toxins, for example, why young boys with leukaemia who undergo chemotherapy can become infertile for life – and possibly lead us to a solution."

The team also believe that studying the process of forming sperm could lead to a better understanding of how genetic diseases are passed on.

In the technique developed at Newcastle, stem cells with XY chromosomes (male) were developed into germline stem cells which were then prompted to complete meiosis - cell division with halving of the chromosome set. These were shown to produce fully mature, sperm called scientifically, In Vitro Derived sperm (IVD sperm).

In contrast, stem cells with XX chromosomes (female) were prompted to form early stage sperm, spermatagonia, but did not progress further. This demonstrates to researchers that the genes on a Y chromosome are essential for meiosis and for sperm maturation.

IVD sperm

The IVD sperm will not and cannot be used for fertility treatment. As well as being prohibited by UK law, the research team say fertilization of human eggs and implantation of embryos would hold no scientific merit for them as they want to study the process as a model for research.

"While we can understand that some people may have concerns, this does not mean that humans can be produced 'in a dish' and we have no intention of doing this. This work is a way of investigating why some people are infertile and the reasons behind it. If we have a better understanding of what's going on it could lead to new ways of treating infertility," adds Professor Nayernia.

Technique

The Newcastle University team have developed a method for establishing early stage sperm from human embryonic stem cells in the laboratory.

The embryonic stem cells were cultured in a new medium containing vitamin A derivative (retinoic acid), in a new technique established by the team. Based on this technique, the cells differentiated into germline stem cells.

These expressed a protein which was stained with a green fluorescent marker and they were separated out by FACSTM (Fluorescence-activated cell sorting) using a laser.

After further differentiation, these in vitro derived germline stem cells expressed markers which are specific to primordial germ cells, spermatogonial stem cells, meiotic (spermatocytes) and post meiotic germ cells (spermatids and sperm).

These results indicated maturation of the primordial germ cells to haploid male gametes – called IVD sperm - characterised by containing half a chromosome set (23 chromosomes).

Karen Bidewell | EurekAlert!
Further information:
http://www.ncl.ac.uk

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>