Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human protein atlas will help pinpoint disease

20.10.2008
A map of where proteins are located in tissues and cells could help scientists understand the molecular basis of diseases such as cancer

Researchers in Sweden are compiling a remarkable 'atlas' that pinpoints the location of thousands of individual proteins in the body's tissues and cells which will give scientists important insights into the function of different proteins and how changes in the distribution of proteins could be reflected in diseases such as cancer.

Professor Mathias Uhlén of the Royal Institute of Technology in Stockholm, who is leading the project, said, "We are trying to map the building blocks of life."

The project is hugely ambitious, relying on the selective identification and mapping of thousands of proteins, many of whose function is not yet known, and has required the development of a massive infrastructure to enable the proteins to be identified in a realistic period of time.

Uhlén was describing the human protein atlas at the European Science Foundation's 3rd Functional Genomics Conference in Innsbruck, Austria, on 1-4 October. Functional genomics describes the way in which genes and their products, proteins, interact together in complex networks in living cells. If these interactions are abnormal, diseases can result. The Innsbruck meeting brought together more than 450 scientists from across Europe to discuss recent advances in the role of functional genomics in disease.

The protein atlas team first uses the human genome - the sequence of all the 20000 or so genes in human cells - to encode individual proteins. They then develop 'antibodies' - protein molecules that recognise specific targets - against each of these proteins. The antibody that recognises a given protein is then labelled with a marker to render it visible under a microscope and is exposed to samples of different tissues and cells. The antibody binds to the proteins and in this way the location of the protein can be detected.

"To do this systematically requires a lot of automation and robotics," Uhlén said. "We have six software engineers writing codes just to keep track on the samples. The project is generating 400 gigabytes of data every day." There is a 100-strong team working on the project, with a site due to be set up soon in India, and with antibody-producing sites in Korea and China.

"To get an idea of how far we have come, in our first year we produced on antibody," said Uhlén. "This year we are hoping we can make 3000." The programme was launched in 2003, and with sufficient funding the first full version of the atlas could be available by 2014, Uhlén believes.

The team has so far mapped the location of around 5000 proteins in human cells and tissues. The researchers are also investigating whether certain common cancers - colon, prostate, lung and breast - have different protein profiles to normal tissue. In this way new 'biomarkers' could be identified - molecules which indicate that a tissue or cell is in a diseased state, which could alert doctors to the early stages of a disease.

Thomas Lau | alfa
Further information:
http://www.esf.org/index.php?id=700
http://www.esf.org

Further reports about: Atlas Cancer Disease Human protein atlas Protein Uhlén genomics in human cells prostate proteins

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>