Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human protein atlas will help pinpoint disease

20.10.2008
A map of where proteins are located in tissues and cells could help scientists understand the molecular basis of diseases such as cancer

Researchers in Sweden are compiling a remarkable 'atlas' that pinpoints the location of thousands of individual proteins in the body's tissues and cells which will give scientists important insights into the function of different proteins and how changes in the distribution of proteins could be reflected in diseases such as cancer.

Professor Mathias Uhlén of the Royal Institute of Technology in Stockholm, who is leading the project, said, "We are trying to map the building blocks of life."

The project is hugely ambitious, relying on the selective identification and mapping of thousands of proteins, many of whose function is not yet known, and has required the development of a massive infrastructure to enable the proteins to be identified in a realistic period of time.

Uhlén was describing the human protein atlas at the European Science Foundation's 3rd Functional Genomics Conference in Innsbruck, Austria, on 1-4 October. Functional genomics describes the way in which genes and their products, proteins, interact together in complex networks in living cells. If these interactions are abnormal, diseases can result. The Innsbruck meeting brought together more than 450 scientists from across Europe to discuss recent advances in the role of functional genomics in disease.

The protein atlas team first uses the human genome - the sequence of all the 20000 or so genes in human cells - to encode individual proteins. They then develop 'antibodies' - protein molecules that recognise specific targets - against each of these proteins. The antibody that recognises a given protein is then labelled with a marker to render it visible under a microscope and is exposed to samples of different tissues and cells. The antibody binds to the proteins and in this way the location of the protein can be detected.

"To do this systematically requires a lot of automation and robotics," Uhlén said. "We have six software engineers writing codes just to keep track on the samples. The project is generating 400 gigabytes of data every day." There is a 100-strong team working on the project, with a site due to be set up soon in India, and with antibody-producing sites in Korea and China.

"To get an idea of how far we have come, in our first year we produced on antibody," said Uhlén. "This year we are hoping we can make 3000." The programme was launched in 2003, and with sufficient funding the first full version of the atlas could be available by 2014, Uhlén believes.

The team has so far mapped the location of around 5000 proteins in human cells and tissues. The researchers are also investigating whether certain common cancers - colon, prostate, lung and breast - have different protein profiles to normal tissue. In this way new 'biomarkers' could be identified - molecules which indicate that a tissue or cell is in a diseased state, which could alert doctors to the early stages of a disease.

Thomas Lau | alfa
Further information:
http://www.esf.org/index.php?id=700
http://www.esf.org

Further reports about: Atlas Cancer Disease Human protein atlas Protein Uhlén genomics in human cells prostate proteins

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>