Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Human-Cell-Derived Model of ALS Provides a New Way to Study the Majority of Cases

For decades, scientists have studied a laboratory mouse model that develops signs of the paralyzing disease amyotrophic lateral sclerosis (ALS) as they age. In a new study appearing in Nature Biotechnology, investigators at Nationwide Children’s Hospital have developed a new model of ALS, one that mimics sporadic ALS, which represents about 90 percent of all cases.

ALS, commonly known as Lou Gehrig's disease, is characterized by the death of motor neurons, which are muscle-controlling nerve cells in the spinal cord. As these neurons die, the body’s voluntary muscles weaken and waste away; death within five years of diagnosis is common. Only about 10 percent of ALS cases are familial meaning the disease runs in the family. The majority of ALS cases are sporadic, with no family history.

Mutations in the SOD1 gene are found in about one-fifth of people with familial ALS, and for decades, experts have theorized that the gene holds clues to sporadic ALS. Laboratory mice carrying human SOD1 mutations develop signs of ALS as they age, and have been widely used to investigate the causes and potential treatments for the disease. At the same time, however, researchers have questioned whether SOD1 mice are useful and whether SOD1 itself is relevant for understanding sporadic ALS. While dozens of potential therapies have shown promise in the mice, most have failed in patients.

“The mouse models capture a type of familial ALS that accounts for only two percent of all cases. The field has begged for new disease models that can provide a clear window into sporadic ALS,” said senior author Brian Kaspar, PhD, principal investigator in the Center for Gene Therapy of The Research Institute at Nationwide Children’s Hospital.

Nationwide Children’s researchers attempted to develop such a model by isolating cells from patients’ spinal tissue within a few days after death.

First, the team isolated neural progenitor cells from post-mortem spinal tissue of patients with ALS. Neural progenitor cells are the “parent” cells of neurons and astrocytes, cells of the central nervous system. They then coaxed these progenitor cells to develop into astrocytes. Next, the team combined the patient-derived astrocytes with mouse motor neurons. At first, the motor neurons grew normally, but after four days, they began to degenerate. By five days, the number of motor neurons reduced by about half compared to motor neurons that had been grown with control astrocytes. Similar results were seen when the motor neurons were grown with astrocytes from a patient with familial ALS, or with a cell culture broth that had been conditioned by astrocytes from any of the ALS patients. This suggests the ALS-derived astrocytes are releasing one or more unknown toxins.

Further experiments revealed that inflammatory responses and SOD1 may play a critical role in this toxicity. These results suggest that replacing astrocytes may be just as important as replacing motor neuron lost to the disease and that astrocytes and SOD1 need further investigation as targets for therapy.

“It has been a long road, but the hard work starts now,” said Dr. Kaspar. “We still need to confront fundamental questions about what is happening to astrocytes and how they are killing motor neurons. And the ultimate goal is to identify therapies that will translate into helping humans.”

The research was funded in part by the National Institutes of Health’s National Institute of Neurological Disorders and Stroke, including a $1.7 million stimulus grant made possible by the American Recovery and Reinvestment Act.

Erin Pope | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>