Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human-Cell-Derived Model of ALS Provides a New Way to Study the Majority of Cases

12.08.2011
For decades, scientists have studied a laboratory mouse model that develops signs of the paralyzing disease amyotrophic lateral sclerosis (ALS) as they age. In a new study appearing in Nature Biotechnology, investigators at Nationwide Children’s Hospital have developed a new model of ALS, one that mimics sporadic ALS, which represents about 90 percent of all cases.

ALS, commonly known as Lou Gehrig's disease, is characterized by the death of motor neurons, which are muscle-controlling nerve cells in the spinal cord. As these neurons die, the body’s voluntary muscles weaken and waste away; death within five years of diagnosis is common. Only about 10 percent of ALS cases are familial meaning the disease runs in the family. The majority of ALS cases are sporadic, with no family history.

Mutations in the SOD1 gene are found in about one-fifth of people with familial ALS, and for decades, experts have theorized that the gene holds clues to sporadic ALS. Laboratory mice carrying human SOD1 mutations develop signs of ALS as they age, and have been widely used to investigate the causes and potential treatments for the disease. At the same time, however, researchers have questioned whether SOD1 mice are useful and whether SOD1 itself is relevant for understanding sporadic ALS. While dozens of potential therapies have shown promise in the mice, most have failed in patients.

“The mouse models capture a type of familial ALS that accounts for only two percent of all cases. The field has begged for new disease models that can provide a clear window into sporadic ALS,” said senior author Brian Kaspar, PhD, principal investigator in the Center for Gene Therapy of The Research Institute at Nationwide Children’s Hospital.

Nationwide Children’s researchers attempted to develop such a model by isolating cells from patients’ spinal tissue within a few days after death.

First, the team isolated neural progenitor cells from post-mortem spinal tissue of patients with ALS. Neural progenitor cells are the “parent” cells of neurons and astrocytes, cells of the central nervous system. They then coaxed these progenitor cells to develop into astrocytes. Next, the team combined the patient-derived astrocytes with mouse motor neurons. At first, the motor neurons grew normally, but after four days, they began to degenerate. By five days, the number of motor neurons reduced by about half compared to motor neurons that had been grown with control astrocytes. Similar results were seen when the motor neurons were grown with astrocytes from a patient with familial ALS, or with a cell culture broth that had been conditioned by astrocytes from any of the ALS patients. This suggests the ALS-derived astrocytes are releasing one or more unknown toxins.

Further experiments revealed that inflammatory responses and SOD1 may play a critical role in this toxicity. These results suggest that replacing astrocytes may be just as important as replacing motor neuron lost to the disease and that astrocytes and SOD1 need further investigation as targets for therapy.

“It has been a long road, but the hard work starts now,” said Dr. Kaspar. “We still need to confront fundamental questions about what is happening to astrocytes and how they are killing motor neurons. And the ultimate goal is to identify therapies that will translate into helping humans.”

The research was funded in part by the National Institutes of Health’s National Institute of Neurological Disorders and Stroke, including a $1.7 million stimulus grant made possible by the American Recovery and Reinvestment Act.

Erin Pope | Newswise Science News
Further information:
http://www.nationwidechildrens.org

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>