Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How we keep track of what matters

23.02.2016

The visual system keeps track of relevant objects even as eye movements are made, shows a study by the German Primate Center

When watching basketball, we are easily able to keep track of the ball while also making frequent eye and head movements to look at the different players. Neuroscientists Tao Yao, Stefan Treue and B. Suresh Krishna from the German Primate Center (DPZ) in Göttingen, Germany, wanted to understand the neural mechanisms that allow us to see a stable world and keep track of relevant objects even without directly looking at them and when we shift our gaze.


When watching basketball, we are easily able to keep track of the ball while also making frequent eye and head movements to look at the different players. Image: Monkey Business Images/ Fotolia

Their study shows that the rhesus macaque’s brain “marks” relevant visual objects and rapidly updates the position of these markers as the monkey looks around. Since humans and monkeys exhibit very similar eye-movements and visual function, these findings are likely to generalize to the human brain. These results are also likely to be important for our understanding of disorders like schizophrenia, visual neglect and other attention deficit disorders (PLOS Biology).

The light that enters the eye falls onto the retina, where it is converted into neural activity that is then used by the brain to provide our sense of vision. The central part of the retina, the fovea, is specialized for more sensitive, higher-definition vision. It is therefore advantageous when viewing a scene, to move the eye so that it is centered successively (or fixated) on each important part of the scene, and light from these parts can fall onto the fovea and be analyzed in greater detail.

Indeed, both humans and monkeys make two to three fast eye movements every second in this manner, with each eye-movement lasting less than one-tenth of a second. Because the eye acts like a camera, each eye-movement results in a different view of the scene falling onto the retina.

However, despite these fast changes in viewpoint (which can also result from head movements), humans and monkeys do not see a scene that jumps around: Instead, they are able to “stitch together” the information obtained during each fixation to perceive a stable visual scene. They are also able to keep track of where relevant objects are in the scene even with these frequent changes in viewpoint. This is a very challenging task. Visual neurons respond more to relevant objects than to irrelevant ones. This increased response to relevant stimuli “marks” relevant stimuli.

Since each visual neuron in the brain only responds when a specific part of the retina is stimulated, each change in viewpoint with an eye-movement results in a different group of neurons being activated by a given visual stimulus before and after the eye-movement. This means that the “marking”, i.e. the information about which objects are relevant, needs to be transferred between different groups of neurons, so that after the eye-movement, these relevant objects continue to evoke larger responses and the brain can keep track of them. However, very little was known about the properties of such an information transfer in the brain, or even about whether it occurred at all.

In order to address this, neuroscientists Tao Yao, Stefan Treue and Suresh Krishna of the German Primate Center (DPZ) examined the responses of many single neurons in the brain of two monkeys while they attended to a stimulus without directly looking at it and made an eye-movement while maintaining attention on this stimulus.

To measure the activity of single neurons, the scientists inserted electrodes thinner than a human hair into the monkey’s brain and recorded the neurons’ electrical activity. Because the brain is not pain-sensitive, this insertion of electrodes is painless for the animal. By recording from single neurons in an area of the monkey’s brain known as area MT, the scientists were able to show that a transfer of information about the locations of relevant objects indeed occurs. However, no information is transferred about what the relevant objects look like.

“Our study shows how the primate brain is able to keep track of attended objects while ignoring irrelevant ones”, says Tao Yao, first author of the publication. It supports the idea that the brain maintains markers to attended stimuli and updates the locations of these markers with each eye-movement.

“Our results answer several important questions about how our brains see a stable visual world despite frequent intervening eye-movements. Also, because the updating of attentional markers is known to be impaired in schizophrenia, visual neglect and other attention deficit disorders, our results may help improve our understanding of these diseases”, Tao Yao comments on the findings.

Original publication
Tao Yao, Stefan Treue and B. Suresh Krishna: An attention-sensitive memory trace in macaque MT following saccadic eye movements. PLOS Biology.

Contact
Dr. Dr. med. Suresh Krishna
Tel: +49 551 3851-354
E-mail: skrishna@dpz.eu

Dr. Susanne Diederich (Communication)
Tel: +49 551 3851-359
E-mail: sdiederich@dpz.eu

Printable Images
Printable images are provided by the DPZ’s public relations department or may be downloaded from the photo database of our website. In case of publication, please send a copy or a link as reference.

The German Primate Center (DPZ) in Göttingen, Germany, conducts basic research on and with primates in the areas of infectious diseases, neurosciences and organismic biology. In addition, it operates four field stations abroad and is a competence and reference center for primate research. The DPZ is one of the 88 research and infrastructure institutions of the Leibniz Association in Germany. www.dpz.eu

Weitere Informationen:

http://medien.dpz.eu/webgate/keyword.html?currentContainerId=3142

Dr. Susanne Diederich | idw - Informationsdienst Wissenschaft

Further reports about: Leibniz-Institut disorders markers monkeys neurons stimulus

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>