Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How we keep track of what matters

23.02.2016

The visual system keeps track of relevant objects even as eye movements are made, shows a study by the German Primate Center

When watching basketball, we are easily able to keep track of the ball while also making frequent eye and head movements to look at the different players. Neuroscientists Tao Yao, Stefan Treue and B. Suresh Krishna from the German Primate Center (DPZ) in Göttingen, Germany, wanted to understand the neural mechanisms that allow us to see a stable world and keep track of relevant objects even without directly looking at them and when we shift our gaze.


When watching basketball, we are easily able to keep track of the ball while also making frequent eye and head movements to look at the different players. Image: Monkey Business Images/ Fotolia

Their study shows that the rhesus macaque’s brain “marks” relevant visual objects and rapidly updates the position of these markers as the monkey looks around. Since humans and monkeys exhibit very similar eye-movements and visual function, these findings are likely to generalize to the human brain. These results are also likely to be important for our understanding of disorders like schizophrenia, visual neglect and other attention deficit disorders (PLOS Biology).

The light that enters the eye falls onto the retina, where it is converted into neural activity that is then used by the brain to provide our sense of vision. The central part of the retina, the fovea, is specialized for more sensitive, higher-definition vision. It is therefore advantageous when viewing a scene, to move the eye so that it is centered successively (or fixated) on each important part of the scene, and light from these parts can fall onto the fovea and be analyzed in greater detail.

Indeed, both humans and monkeys make two to three fast eye movements every second in this manner, with each eye-movement lasting less than one-tenth of a second. Because the eye acts like a camera, each eye-movement results in a different view of the scene falling onto the retina.

However, despite these fast changes in viewpoint (which can also result from head movements), humans and monkeys do not see a scene that jumps around: Instead, they are able to “stitch together” the information obtained during each fixation to perceive a stable visual scene. They are also able to keep track of where relevant objects are in the scene even with these frequent changes in viewpoint. This is a very challenging task. Visual neurons respond more to relevant objects than to irrelevant ones. This increased response to relevant stimuli “marks” relevant stimuli.

Since each visual neuron in the brain only responds when a specific part of the retina is stimulated, each change in viewpoint with an eye-movement results in a different group of neurons being activated by a given visual stimulus before and after the eye-movement. This means that the “marking”, i.e. the information about which objects are relevant, needs to be transferred between different groups of neurons, so that after the eye-movement, these relevant objects continue to evoke larger responses and the brain can keep track of them. However, very little was known about the properties of such an information transfer in the brain, or even about whether it occurred at all.

In order to address this, neuroscientists Tao Yao, Stefan Treue and Suresh Krishna of the German Primate Center (DPZ) examined the responses of many single neurons in the brain of two monkeys while they attended to a stimulus without directly looking at it and made an eye-movement while maintaining attention on this stimulus.

To measure the activity of single neurons, the scientists inserted electrodes thinner than a human hair into the monkey’s brain and recorded the neurons’ electrical activity. Because the brain is not pain-sensitive, this insertion of electrodes is painless for the animal. By recording from single neurons in an area of the monkey’s brain known as area MT, the scientists were able to show that a transfer of information about the locations of relevant objects indeed occurs. However, no information is transferred about what the relevant objects look like.

“Our study shows how the primate brain is able to keep track of attended objects while ignoring irrelevant ones”, says Tao Yao, first author of the publication. It supports the idea that the brain maintains markers to attended stimuli and updates the locations of these markers with each eye-movement.

“Our results answer several important questions about how our brains see a stable visual world despite frequent intervening eye-movements. Also, because the updating of attentional markers is known to be impaired in schizophrenia, visual neglect and other attention deficit disorders, our results may help improve our understanding of these diseases”, Tao Yao comments on the findings.

Original publication
Tao Yao, Stefan Treue and B. Suresh Krishna: An attention-sensitive memory trace in macaque MT following saccadic eye movements. PLOS Biology.

Contact
Dr. Dr. med. Suresh Krishna
Tel: +49 551 3851-354
E-mail: skrishna@dpz.eu

Dr. Susanne Diederich (Communication)
Tel: +49 551 3851-359
E-mail: sdiederich@dpz.eu

Printable Images
Printable images are provided by the DPZ’s public relations department or may be downloaded from the photo database of our website. In case of publication, please send a copy or a link as reference.

The German Primate Center (DPZ) in Göttingen, Germany, conducts basic research on and with primates in the areas of infectious diseases, neurosciences and organismic biology. In addition, it operates four field stations abroad and is a competence and reference center for primate research. The DPZ is one of the 88 research and infrastructure institutions of the Leibniz Association in Germany. www.dpz.eu

Weitere Informationen:

http://medien.dpz.eu/webgate/keyword.html?currentContainerId=3142

Dr. Susanne Diederich | idw - Informationsdienst Wissenschaft

Further reports about: Leibniz-Institut disorders markers monkeys neurons stimulus

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>