Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How we keep track of what matters

23.02.2016

The visual system keeps track of relevant objects even as eye movements are made, shows a study by the German Primate Center

When watching basketball, we are easily able to keep track of the ball while also making frequent eye and head movements to look at the different players. Neuroscientists Tao Yao, Stefan Treue and B. Suresh Krishna from the German Primate Center (DPZ) in Göttingen, Germany, wanted to understand the neural mechanisms that allow us to see a stable world and keep track of relevant objects even without directly looking at them and when we shift our gaze.


When watching basketball, we are easily able to keep track of the ball while also making frequent eye and head movements to look at the different players. Image: Monkey Business Images/ Fotolia

Their study shows that the rhesus macaque’s brain “marks” relevant visual objects and rapidly updates the position of these markers as the monkey looks around. Since humans and monkeys exhibit very similar eye-movements and visual function, these findings are likely to generalize to the human brain. These results are also likely to be important for our understanding of disorders like schizophrenia, visual neglect and other attention deficit disorders (PLOS Biology).

The light that enters the eye falls onto the retina, where it is converted into neural activity that is then used by the brain to provide our sense of vision. The central part of the retina, the fovea, is specialized for more sensitive, higher-definition vision. It is therefore advantageous when viewing a scene, to move the eye so that it is centered successively (or fixated) on each important part of the scene, and light from these parts can fall onto the fovea and be analyzed in greater detail.

Indeed, both humans and monkeys make two to three fast eye movements every second in this manner, with each eye-movement lasting less than one-tenth of a second. Because the eye acts like a camera, each eye-movement results in a different view of the scene falling onto the retina.

However, despite these fast changes in viewpoint (which can also result from head movements), humans and monkeys do not see a scene that jumps around: Instead, they are able to “stitch together” the information obtained during each fixation to perceive a stable visual scene. They are also able to keep track of where relevant objects are in the scene even with these frequent changes in viewpoint. This is a very challenging task. Visual neurons respond more to relevant objects than to irrelevant ones. This increased response to relevant stimuli “marks” relevant stimuli.

Since each visual neuron in the brain only responds when a specific part of the retina is stimulated, each change in viewpoint with an eye-movement results in a different group of neurons being activated by a given visual stimulus before and after the eye-movement. This means that the “marking”, i.e. the information about which objects are relevant, needs to be transferred between different groups of neurons, so that after the eye-movement, these relevant objects continue to evoke larger responses and the brain can keep track of them. However, very little was known about the properties of such an information transfer in the brain, or even about whether it occurred at all.

In order to address this, neuroscientists Tao Yao, Stefan Treue and Suresh Krishna of the German Primate Center (DPZ) examined the responses of many single neurons in the brain of two monkeys while they attended to a stimulus without directly looking at it and made an eye-movement while maintaining attention on this stimulus.

To measure the activity of single neurons, the scientists inserted electrodes thinner than a human hair into the monkey’s brain and recorded the neurons’ electrical activity. Because the brain is not pain-sensitive, this insertion of electrodes is painless for the animal. By recording from single neurons in an area of the monkey’s brain known as area MT, the scientists were able to show that a transfer of information about the locations of relevant objects indeed occurs. However, no information is transferred about what the relevant objects look like.

“Our study shows how the primate brain is able to keep track of attended objects while ignoring irrelevant ones”, says Tao Yao, first author of the publication. It supports the idea that the brain maintains markers to attended stimuli and updates the locations of these markers with each eye-movement.

“Our results answer several important questions about how our brains see a stable visual world despite frequent intervening eye-movements. Also, because the updating of attentional markers is known to be impaired in schizophrenia, visual neglect and other attention deficit disorders, our results may help improve our understanding of these diseases”, Tao Yao comments on the findings.

Original publication
Tao Yao, Stefan Treue and B. Suresh Krishna: An attention-sensitive memory trace in macaque MT following saccadic eye movements. PLOS Biology.

Contact
Dr. Dr. med. Suresh Krishna
Tel: +49 551 3851-354
E-mail: skrishna@dpz.eu

Dr. Susanne Diederich (Communication)
Tel: +49 551 3851-359
E-mail: sdiederich@dpz.eu

Printable Images
Printable images are provided by the DPZ’s public relations department or may be downloaded from the photo database of our website. In case of publication, please send a copy or a link as reference.

The German Primate Center (DPZ) in Göttingen, Germany, conducts basic research on and with primates in the areas of infectious diseases, neurosciences and organismic biology. In addition, it operates four field stations abroad and is a competence and reference center for primate research. The DPZ is one of the 88 research and infrastructure institutions of the Leibniz Association in Germany. www.dpz.eu

Weitere Informationen:

http://medien.dpz.eu/webgate/keyword.html?currentContainerId=3142

Dr. Susanne Diederich | idw - Informationsdienst Wissenschaft

Further reports about: Leibniz-Institut disorders markers monkeys neurons stimulus

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>