Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How genes link a mother's diet to the risk of obesity in her offspring

03.09.2014

New research in The FASEB Journal suggests that epigenetic methylation blocks expression of the Pomc gene, leadings to delayed satiety response and increased food intake

Many research studies have made it clear that a mother's eating habits prior to pregnancy, during pregnancy and during lactation have a profound impact on her offspring and their propensity for developing weight problems, including obesity.

However, until now, the mechanisms behind this phenomenon were unclear. According to new research published in the September 2014 issue of The FASEB JournalF, scientists using an animal model found an epigenetic link between a mother's diet and an offspring's risk of future obesity.

This link hinges on the blocked expression of a gene called Pomc, which manages a discrete area of the brain that controls feeding behavior. Excess methylation on the DNA sequence blocks the ability to express this gene, leading to a late satiety response, increased food intake and eventually to obesity.

"Parental obesity and diet can affect the children's likelihood to overeat and develop obesity. Changes in epigenetic programming have been implicated as one of the mechanisms underlying this phenomenon," said Asaf Marco, Ph.D., a researcher involved in the work from the Faculty of Life Sciences at Bar Ilan University in Ramat-Gan, Israel. "We observed a clear correspondence between a specific epigenetic mechanism and weight gain, potentially allowing for early detection and prevention of obesity."

To make this discovery, Marco and colleagues fed female rats either a high-fat diet or a standard diet from post-weaning to adulthood and in separate groups, throughout pregnancy and lactation. All offspring, including those of the high-fat treated rats, received standard food after weaning until adulthood. Blood was analyzed for hormone levels and brain sections for epigenetic modification on the specific DNA sequence of interest.

Results showed that unmated female rats, chronically fed a high-fat diet, presented obesity associated with disruptions in an epigenetic mechanism that controls the production of Pomc. However, due to the sharp weight loss during lactation, rats who consumed a high-fat diet presented normal weight and a normalized epigenetic mechanism.

Because methylation on the genes is typically considered stable and relatively permanent, this opens the door for future drug development. Researchers found that epigenetic malprogramming induced by maternal high-fat diet had a long-term effect on the offspring's vulnerability to develop obesity. These effects were not reprogrammed by providing standard food to the pups after weaning and the offspring maintained their obesogenic phenotype until adulthood.

"Shining light on heritable, epigenetic factors that cause obesity should help us shed unwanted pounds in future generations," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal. "This research shows that being overweight and obese has a direct impact on the genes we use to signal when it's time to stop eating."

###

Receive monthly highlights from The FASEB Journal by e-mail. Sign up at http://www.faseb.org/fjupdate.aspx. The FASEB Journal is published by the Federation of the American Societies for Experimental Biology (FASEB). It is the world's most cited biology journal according to the Institute for Scientific Information and has been recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century.

FASEB is composed of 27 societies with more than 120,000 members, making it the largest coalition of biomedical research associations in the United States. Our mission is to advance health and welfare by promoting progress and education in biological and biomedical sciences through service to our member societies and collaborative advocacy.

Details: Asaf Marco, Tatiana Kisliouk, Tzlil Tabachnik, Noam Meiri, and Aron Weller. Overweight and CpG methylation of the Pomc promoter in offspring of high-fat-diet-fed dams are not "reprogrammed" by regular chow diet in rats. FASEB J. September 2014 28:4148-4157; doi:10.1096/fj.14-255620 ; http://www.fasebj.org/content/28/9/4148.abstract

Cody Mooneyhan | Eurek Alert!

Further reports about: Biology FASEB epigenetic genes high-fat mechanism methylation offspring pregnancy weight

More articles from Life Sciences:

nachricht Puget Sound's clingfish could inspire better medical devices, whale tags
05.05.2015 | University of Washington

nachricht The media is the message: How stem cells grow depends on what they grow up in
05.05.2015 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Pulsar with widest orbit ever detected

Discovered by high school research team

A team of highly determined high school students discovered a never-before-seen pulsar by painstakingly analyzing data from the National Science Foundation's...

Im Focus: Erosion, landslides and monsoon across the Himalaya

Scientists from Nepal, Switzerland and Germany was now able to show how erosion processes caused by the monsoon are mirrored in the sediment load of a river crossing the Himalaya.

In these days, it was again tragically demonstrated that the Himalayas are one of the most active geodynamic regions of the world. Landslides belong to the...

Im Focus: Through the galaxy by taxi - The Dream Chaser Space Utility Vehicle

A world-class prime systems integrator and electronic systems provider known for its rapid, innovative, and agile technology solutions, Sierra Nevada Corporation (SNC) is currently developing a new space transportation system called the Dream Chaser.

The ultimate aim is to construct a multi-mission-capable space utility vehicle, while accelerating the overall development process for this critical capability...

Im Focus: High-tech textiles – more than just clothes

Today, textiles are used for more than just clothes or bags – they are high tech materials for high-tech applications. High-tech textiles must fulfill a number of functions and meet many requirements. That is why the Fraunhofer Institute for Silicate Research ISC dedicated some major developing work to this most intriguing research area. The result can now be seen at Techtextil trade show in Frankfurt from 4 to 7 May. On display will be novel textile-integrated sensors, a unique multifunctional coating system for textiles and fibers, and textile processing of glass, carbon, and ceramics fibers to fiber preforms.

Thin materials and new kinds of sensors now make it possible to integrate silicone elastomer sensors in textiles. They are suitable for applications in medical...

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

The media is the message: How stem cells grow depends on what they grow up in

05.05.2015 | Life Sciences

Study shows dietary supplements are good for coral health

05.05.2015 | Earth Sciences

Chicxulub and the deccan eruptions: Just a coincidence?

05.05.2015 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>