Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How genes link a mother's diet to the risk of obesity in her offspring

03.09.2014

New research in The FASEB Journal suggests that epigenetic methylation blocks expression of the Pomc gene, leadings to delayed satiety response and increased food intake

Many research studies have made it clear that a mother's eating habits prior to pregnancy, during pregnancy and during lactation have a profound impact on her offspring and their propensity for developing weight problems, including obesity.

However, until now, the mechanisms behind this phenomenon were unclear. According to new research published in the September 2014 issue of The FASEB JournalF, scientists using an animal model found an epigenetic link between a mother's diet and an offspring's risk of future obesity.

This link hinges on the blocked expression of a gene called Pomc, which manages a discrete area of the brain that controls feeding behavior. Excess methylation on the DNA sequence blocks the ability to express this gene, leading to a late satiety response, increased food intake and eventually to obesity.

"Parental obesity and diet can affect the children's likelihood to overeat and develop obesity. Changes in epigenetic programming have been implicated as one of the mechanisms underlying this phenomenon," said Asaf Marco, Ph.D., a researcher involved in the work from the Faculty of Life Sciences at Bar Ilan University in Ramat-Gan, Israel. "We observed a clear correspondence between a specific epigenetic mechanism and weight gain, potentially allowing for early detection and prevention of obesity."

To make this discovery, Marco and colleagues fed female rats either a high-fat diet or a standard diet from post-weaning to adulthood and in separate groups, throughout pregnancy and lactation. All offspring, including those of the high-fat treated rats, received standard food after weaning until adulthood. Blood was analyzed for hormone levels and brain sections for epigenetic modification on the specific DNA sequence of interest.

Results showed that unmated female rats, chronically fed a high-fat diet, presented obesity associated with disruptions in an epigenetic mechanism that controls the production of Pomc. However, due to the sharp weight loss during lactation, rats who consumed a high-fat diet presented normal weight and a normalized epigenetic mechanism.

Because methylation on the genes is typically considered stable and relatively permanent, this opens the door for future drug development. Researchers found that epigenetic malprogramming induced by maternal high-fat diet had a long-term effect on the offspring's vulnerability to develop obesity. These effects were not reprogrammed by providing standard food to the pups after weaning and the offspring maintained their obesogenic phenotype until adulthood.

"Shining light on heritable, epigenetic factors that cause obesity should help us shed unwanted pounds in future generations," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal. "This research shows that being overweight and obese has a direct impact on the genes we use to signal when it's time to stop eating."

###

Receive monthly highlights from The FASEB Journal by e-mail. Sign up at http://www.faseb.org/fjupdate.aspx. The FASEB Journal is published by the Federation of the American Societies for Experimental Biology (FASEB). It is the world's most cited biology journal according to the Institute for Scientific Information and has been recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century.

FASEB is composed of 27 societies with more than 120,000 members, making it the largest coalition of biomedical research associations in the United States. Our mission is to advance health and welfare by promoting progress and education in biological and biomedical sciences through service to our member societies and collaborative advocacy.

Details: Asaf Marco, Tatiana Kisliouk, Tzlil Tabachnik, Noam Meiri, and Aron Weller. Overweight and CpG methylation of the Pomc promoter in offspring of high-fat-diet-fed dams are not "reprogrammed" by regular chow diet in rats. FASEB J. September 2014 28:4148-4157; doi:10.1096/fj.14-255620 ; http://www.fasebj.org/content/28/9/4148.abstract

Cody Mooneyhan | Eurek Alert!

Further reports about: Biology FASEB epigenetic genes high-fat mechanism methylation offspring pregnancy weight

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>