Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hopping Protons

14.04.2011
Dr. Burkhard Schmidt simulates proton transfer in amino acids and small peptides on MATHEON. Proton transfer plays a role in energy conversion within solar cells and fuel cells, for example, and applies to the energy flow in batteries. It is even relevant to the development of new drugs.

How do you simulate the behaviour of protons and amino acids on the computer? How do you depict experiments to study their behaviour as more or less water is introduced? These questions may seem trivial in this age of powerful computers. Yet, it turns out this task will remain almost impossible to solve until new mathematical algorithms are found. Protons simply behave too quickly and too “unpredictably”.


Snapshot from ab Initio Molecular Dynamic Simulation. © Schmidt

In the DFG Research Centre MATHEON project “Modelling and optimizing functional molecules“, Dr. Burkhard Schmidt is working on this problem under the direction of Prof. Christof Schütte. He is using computer simulations to investigate the role of water as a solvent when it is added to amino acids or peptides in tiny steps. His main objective is to research the proton transfer between two end-groups – which leads to the formation of so-called zwitterions – and the proton transfer between appropriate side chains – which leads to the formation of so-called salt bridges.

Schmidt’s work is still at the fundamental research level, but his results will be of enormous significance to many fields. Proton transfer plays a role in energy conversion within solar cells and fuel cells, for example, and applies to the energy flow in batteries. It is even relevant to the development of new drugs.

A zwitterion is a molecule that has two or more functional groups, where one group is positively charged and another negatively charged. The molecule is therefore electrically neutral overall. Amino acids are natively electrically neutral molecules. If you dissolve them in water, however, the water protons start to ‘hop’, causing one end of the amino acid to become negatively charged and the other end to become positively charged. The protons involved in this process remain constantly in motion, forever forming new bonds. If protons hop all the way along neighbouring molecules, then charges can also be transported over nanometre-scale distances in so-called water bridges or “water wires”. All this happens on extremely short time scales.

Dr. Schmidt believes his project will help understand proton transfer mechanisms on a microscopic level. He is currently focusing on amino acids and small peptide chains. The researcher describes his approach: “Although the vast majority of biological processes occur in watery solution, our studies start by looking at isolated amino acids and peptides, in order to distinguish intramolecular from intermolecular processes. Then we gradually add individual water molecules to our simulations. That way, we can study the influence of the solvent in a controlled manner.” It is an ambitious project, since such studies can only be performed in computer simulations, and would be monumentally difficult or simply impossible as real experiments.

The scientist intends to explain, for example, how many water molecules are required to make amino acids or peptides change from neutral to zwitterionic form. He also intends to study what happens to a salt bridge as water molecules are added. “Furthermore, it is interesting to simulate these processes in their time-dependency, to be able to study the timescales of the investigated processes as well. Essential questions include how fast protons can be released from or deposited onto the appropriate side chains, or on what timescale protons are transferred between protein and water, and how fast protein transport is along water bridges,” Burkhard Schmidt explains.

In his studies, Schmidt will employ methods to calculate the energies or forces from the electron structure at every time step of the simulation. This distinguishes his work from “conventional” computer simulations, in which empirical models are applied to calculate energies and forces between the atoms. “Aside from the questionable accuracy and applicability of such empirical models, their fundamental limit is that they cannot describe the breaking and forming of chemical bonds. I’m not satisfied with that,” he says. His current research builds upon a previous project in which Dr. Schmidt studied the reaction of a proton and an electron in a water cluster. (Cluster=microdroplet)

Thanks to his mathematical/physical methods, Burkhard Schmidt is already able to calculate chemical processes a number of picoseconds long (1 picosecond = 0.000 000 000 001 second) on mainframe computers. “That’s a lot already, but I would like to reach up to nanoseconds (0.000 000 001 second),” the scientist concludes.

More information:
Dr. Burkhard Schmidt,
phone: +49 30 838 75369,
Email: burkhard.schmidt@fu-berlin.de

Rudolf Kellermann | idw
Further information:
http://www.matheon.de
http://www.math.fu-berlin.de/groups/biocomputing/people/burkhard_schmidt.html

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>