Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HIV drugs interfere with blood sugar, lead to insulin resistance

23.11.2010
The same powerful drugs that have extended the lives of countless people with HIV come with a price – insulin resistance that can lead to diabetes and cardiovascular disease.

Now, researchers at Washington University School of Medicine in St. Louis have determined why that happens. Their research shows that HIV protease inhibitors directly interfere with the way blood sugar levels are controlled in the body. This leads to insulin resistance, a condition that occurs when the body produces enough insulin but doesn’t use it properly.

This confirmation provides the potential to develop safer antiviral drugs.

Paul Hruz, MD, PhD, assistant professor of pediatrics and of cell biology and physiology at the School of Medicine, and his team found that first-generation protease inhibitors, including the drug ritonavir, block GLUT4, a protein that transports glucose from the blood into the cells where it is needed. This raises blood sugar levels – a hallmark of diabetes.

“Our lab has established that one of the effects of these drugs is blocking glucose transport, one of most important steps in how insulin works,” says Hruz, senior author of the study published in the Nov. 19 Journal of Biological Chemistry. “Now that we’ve identified the main mechanism, we will look to develop new drugs that treat HIV but don’t cause diabetes.”

Hruz’s lab made the discovery in mice that lacked the GLUT4 protein. When researchers gave these mice ritonavir, the drug had no effect on their glucose tolerance. However, when they gave the drug to normal mice, their blood glucose shot up very quickly, showing that the drugs impair glucose tolerance and promote insulin resistance.

“What we saw were very acute effects on insulin sensitivity that we could reverse in the mice,” Hruz says. “But when insulin resistance goes on for a long time, secondary changes develop, such as high triglycerides, and those are harder to reverse,” he says.

The finding will help researchers better understand the role of glucose transporters in health and disease, including the epidemic of type 2 diabetes in HIV negative patients, says Hruz. He expects the results will help scientists better understand how to develop new diabetes drugs and the role of glucose transport in diseases such as heart failure.

Hruz and his team are now studying at the molecular level how the HIV drugs inhibit GLUT4.

“We’d like to figure out exactly how these drugs interact with the transporter to aid the development of better HIV drugs,” he says. “We want to find problems in glucose transport that lead to diabetes in the preclinical stage of drug development.”

The team already is working with a drug developer to create a new HIV drug that the virus does not develop resistance to and does not block GLUT4.

Vyas A, Koster J, Tzekov A, Hruz, P. Effects of the HIV Protease Inhibitor Ritonavir on GLUT4 Knock-out Mice. Journal of Biological Chemistry. Nov. 19, 2010.

The National Institutes of Health provided funding for this study.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked fourth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Beth Miller | EurekAlert!
Further information:
http://www.wustl.edu
http://news.wustl.edu/news/Pages/21545.aspx

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>