Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HIV drugs interfere with blood sugar, lead to insulin resistance

23.11.2010
The same powerful drugs that have extended the lives of countless people with HIV come with a price – insulin resistance that can lead to diabetes and cardiovascular disease.

Now, researchers at Washington University School of Medicine in St. Louis have determined why that happens. Their research shows that HIV protease inhibitors directly interfere with the way blood sugar levels are controlled in the body. This leads to insulin resistance, a condition that occurs when the body produces enough insulin but doesn’t use it properly.

This confirmation provides the potential to develop safer antiviral drugs.

Paul Hruz, MD, PhD, assistant professor of pediatrics and of cell biology and physiology at the School of Medicine, and his team found that first-generation protease inhibitors, including the drug ritonavir, block GLUT4, a protein that transports glucose from the blood into the cells where it is needed. This raises blood sugar levels – a hallmark of diabetes.

“Our lab has established that one of the effects of these drugs is blocking glucose transport, one of most important steps in how insulin works,” says Hruz, senior author of the study published in the Nov. 19 Journal of Biological Chemistry. “Now that we’ve identified the main mechanism, we will look to develop new drugs that treat HIV but don’t cause diabetes.”

Hruz’s lab made the discovery in mice that lacked the GLUT4 protein. When researchers gave these mice ritonavir, the drug had no effect on their glucose tolerance. However, when they gave the drug to normal mice, their blood glucose shot up very quickly, showing that the drugs impair glucose tolerance and promote insulin resistance.

“What we saw were very acute effects on insulin sensitivity that we could reverse in the mice,” Hruz says. “But when insulin resistance goes on for a long time, secondary changes develop, such as high triglycerides, and those are harder to reverse,” he says.

The finding will help researchers better understand the role of glucose transporters in health and disease, including the epidemic of type 2 diabetes in HIV negative patients, says Hruz. He expects the results will help scientists better understand how to develop new diabetes drugs and the role of glucose transport in diseases such as heart failure.

Hruz and his team are now studying at the molecular level how the HIV drugs inhibit GLUT4.

“We’d like to figure out exactly how these drugs interact with the transporter to aid the development of better HIV drugs,” he says. “We want to find problems in glucose transport that lead to diabetes in the preclinical stage of drug development.”

The team already is working with a drug developer to create a new HIV drug that the virus does not develop resistance to and does not block GLUT4.

Vyas A, Koster J, Tzekov A, Hruz, P. Effects of the HIV Protease Inhibitor Ritonavir on GLUT4 Knock-out Mice. Journal of Biological Chemistry. Nov. 19, 2010.

The National Institutes of Health provided funding for this study.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked fourth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Beth Miller | EurekAlert!
Further information:
http://www.wustl.edu
http://news.wustl.edu/news/Pages/21545.aspx

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>