Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Histone Modification Controls Development

08.02.2013
Every gene in the nucleus of an animal or plant cell is packaged into a beads-on-a-string like structure called nucleosomes: the DNA of the gene forms the string and a complex of proteins called histones forms the beads around which DNA is wrapped.
Scientists of the MPI Biochemistry have now established that adding chemical tags on histones is critical for regulating gene activity during animal development. Former studies revealed that many proteins that control gene activity are enzymes that add small chemical tags on histones but also on a variety of other proteins. With their studies the scientists have now shown that it is the tags on the histones that control if genes are active or not.

Histone proteins can be modified by a number of different chemical tags at very specific sites. The researchers in the Research Group ‘Chromatin Biology’ of Jürg Müller focused on the histone tag that is added by an enzyme called Polycomb Repressive Complex 2 (PRC2). PRC2 is essential for a variety of different cell fate decisions in animals and plants. PRC2 functions to keep genes inactive in cells and at times where they should remain inactive.

Cells lacking PRC2 (top) or cells containing an altered histone that can no longer be tagged (bottom) show the same effect: a gene that normally should be shut down, is activated (red signal). As opposed to the surrounding wild type cells marked with green.

Figure: Ana R. Pengelly/ Copyright: MPI of Biochemistry

Using the model organism Drosophila - the fruit fly - the scientists now generated animals with cells expressing an altered histone protein to which PRC2 can no longer add the tag. These cells cannot keep genes inactive anymore and many cell fate decisions go awry, exactly like in cells that lack the PRC2 enzyme. “This observation demonstrates that the business end is the tag on the histone and not on some other protein” says Ana Pengelly, the PhD student who conducted the experiments.

Her colleague Omer Copur adds: “The approach we used permits us to now also investigate the function of other tags on histone proteins that have a different chemical nature.” The insight gained from the work on PRC2 provides a strong impetus to figure how this tag alters the beads-on-a-string structure of genes and thereby controls gene activity.

Anja Konschak | Max-Planck-Institut
Further information:
http://www.biochem.mpg.de/mueller/
http://www.biochem.mpg.de/en/news/pressroom/index.html

Further reports about: Control DNA End User Development Histone PRC2 cell fate gene activity modification

More articles from Life Sciences:

nachricht Subcutaneous Administration of Multispecific Antibody Makes Tumor Treatment Faster & More Tolerable
01.07.2015 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Why human egg cells don't age well
01.07.2015 | RIKEN

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Viaducts with wind turbines, the new renewable energy source

Wind turbines could be installed under some of the biggest bridges on the road network to produce electricity. So it is confirmed by calculations carried out by a European researchers team, that have taken a viaduct in the Canary Islands as a reference. This concept could be applied in heavily built-up territories or natural areas with new constructions limitations.

The Juncal Viaduct, in Gran Canaria, has served as a reference for Spanish and British researchers to verify that the wind blowing between the pillars on this...

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Siemens acquires leading UK enforcement provider Zenco Systems

02.07.2015 | Press release

Viaducts with wind turbines, the new renewable energy source

02.07.2015 | Power and Electrical Engineering

NASA sees heavy rain in Tropical Cyclone Chan-Hom

02.07.2015 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>