Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


High CO2 Boosts Plant Respiration, Potentially Affecting Climate And Crops

The leaves of soybeans grown at the elevated carbon dioxide levels predicted for the year 2050 respire more than those grown under current atmospheric conditions, researchers report, a finding that will help fine-tune climate models and could point to increased crop yields as CO2 levels rise.

The study, from researchers at the University of Illinois and the U.S. Department of Agriculture, appears this week in the Proceedings of the National Academy of Sciences.

Plants draw CO2 from the atmosphere and make sugars through the process of photosynthesis. But they also release some CO2 during respiration as they use the sugars to generate energy for self-maintenance and growth. How elevated CO2 affects plant respiration will therefore influence future food supplies and the extent to which plants can capture CO2 from the air and store it as carbon in their tissues.

While there is broad agreement that higher atmospheric CO2 levels stimulate photosynthesis in C3 plants, such as soybeans, no such consensus exists on how rising CO2 levels will affect plant respiration.

"There's been a great deal of controversy about how plant respiration responds to elevated CO2," said U. of I. plant biology professor Andrew Leakey, who led the study. "Some summary studies suggest it will go down by 18 percent, some suggest it won't change, and some suggest it will increase as much as 11 percent."

Understanding how the respiratory pathway responds when plants are grown at elevated CO2 is key to reducing this uncertainty, Leakey said. His team used microarrays, a genomic tool that can detect changes in the activity of thousands of genes at a time, to learn which genes in the high CO2 plants were being switched on at higher or lower levels than those of the soybeans grown at current CO2 levels.

Rather than assessing plants grown in chambers in a greenhouse, as most studies have done, Leakey's team made use of the Soybean Free Air Concentration Enrichment (Soy FACE) facility at Illinois. This open-air research lab can expose a soybean field to a variety of atmospheric CO2 levels - without isolating the plants from other environmental influences, such as rainfall, sunlight and insects.

Some of the plants were exposed to atmospheric CO2 levels of 550 parts per million (ppm), the level predicted for the year 2050 if current trends continue. These were compared with plants grown at ambient CO2 levels (380 ppm).

The results were striking. At least 90 different genes coding the majority of enzymes in the cascade of chemical reactions that govern respiration were switched on (expressed) at higher levels in the soybeans grown at high CO2 levels. This explained how the plants were able to use the increased supply of sugars from stimulated photosynthesis under high CO2 conditions to produce energy, Leakey said. The rate of respiration increased 37 percent at the elevated CO2 levels.

The enhanced respiration is likely to support greater transport of sugars from leaves to other growing parts of the plant, including the seeds, Leakey said.

"The expression of over 600 genes was altered by elevated CO2 in total, which will help us to understand how the response is regulated and also hopefully produce crops that will perform better in the future," he said.

Leakey is also an affiliate of the Institute for Genomic Biology at Illinois.

Diana Yates | University of Illinois
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>