Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The hepatitis healing power of blueberry leaves

11.08.2009
A chemical found in blueberry leaves has shown a strong effect in blocking the replication of the Hepatitis C virus, opening up a new avenue for treating chronic HCV infections, which affect 200 million people worldwide and can eventually lead to cirrhosis and liver cancer.

Among the areas of especially high Hepatitis C incidence is the Miyazaki prefecture of southern Japan, a trend that led Hiroaki Kataoka and colleagues at the University of Miyazaki and elsewhere in Japan on a search for better treatment options.

Currently, there is no vaccine for HCV, and though a combination drug regimen can clear HCV infection, this treatment is only about 60% effective on average and poses risks of severe side effects.

Kataoka and colleagues believed that since HCV is localized in the liver and can take 20 years or more to develop into disease, a dietary supplement might help slow or stop disease progression. So they screened nearly 300 different agricultural products for potential compounds that suppress HCV replication and uncovered a strong candidate in the leaves of rabbit-eye blueberry (native to the southeastern US).

They purified the compound and identified it as proanthocyandin (a polyphenol similar to the beneficial chemicals found in grapes and wine). While proanthocyandin can be harmful, Kataoka and colleagues noted its effective concentration against HCV was 100 times less than the toxic threshold, and similar chemicals are found in many edible plants, suggesting it should be safe as a dietary supplement. In the meantime, the researchers now hope to explore the detailed mechanisms of how this chemical stops HCV replication.

From the Article: "Proanthocyanidin from Blueberry Leaves Suppresses Expression of Subgenomic Hepatitis C Virus RNA" by Masahiko Takeshita, Yo-ichi Ishida, Ena Akamatsu, Yusuke Ohmori, Masayuki Sudoh, Hirofumi Uto, Hirohito Tsubouchi, and Hiroaki Kataoka

Article link: http://www.jbc.org/cgi/content/full/284/32/21165

Corresponding Author: Hiroaki Kataoka, Univeristy of Miyazaki, Japan; Tel: +81-985-85-2809, email: mejina@fc.miyazaki-u.ac.jp

Dr. Kataoka will be away from the lab between Aug 7-13. Dr. Kataoka can still be contacted by email during this time.

You can also contact Hirohito Tsubouchi at htsubo@m2.kufm.kagoshima-u.ac.jp

The American Society for Biochemistry and Molecular Biology is a nonprofit scientific and educational organization with over 12,000 members in the United States and internationally. Most members teach and conduct research at colleges and universities. Others conduct research in various government laboratories, nonprofit research institutions and industry. The Society's student members attend undergraduate or graduate institutions.

Founded in 1906, the Society is based in Bethesda, Maryland, on the campus of the Federation of American Societies for Experimental Biology. The Society's purpose is to advance the science of biochemistry and molecular biology through publication of the Journal of Biological Chemistry, the Journal of Lipid Research, and Molecular and Cellular Proteomics, organization of scientific meetings, advocacy for funding of basic research and education, support of science education at all levels, and promoting the diversity of individuals entering the scientific work force.

For more information about ASBMB, see the Society's Web site at www.asbmb.org.

Nick Zagorski | EurekAlert!
Further information:
http://www.asbmb.org
http://www.jbc.org/cgi/content/full/284/32/21165

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>