Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The hepatitis healing power of blueberry leaves

11.08.2009
A chemical found in blueberry leaves has shown a strong effect in blocking the replication of the Hepatitis C virus, opening up a new avenue for treating chronic HCV infections, which affect 200 million people worldwide and can eventually lead to cirrhosis and liver cancer.

Among the areas of especially high Hepatitis C incidence is the Miyazaki prefecture of southern Japan, a trend that led Hiroaki Kataoka and colleagues at the University of Miyazaki and elsewhere in Japan on a search for better treatment options.

Currently, there is no vaccine for HCV, and though a combination drug regimen can clear HCV infection, this treatment is only about 60% effective on average and poses risks of severe side effects.

Kataoka and colleagues believed that since HCV is localized in the liver and can take 20 years or more to develop into disease, a dietary supplement might help slow or stop disease progression. So they screened nearly 300 different agricultural products for potential compounds that suppress HCV replication and uncovered a strong candidate in the leaves of rabbit-eye blueberry (native to the southeastern US).

They purified the compound and identified it as proanthocyandin (a polyphenol similar to the beneficial chemicals found in grapes and wine). While proanthocyandin can be harmful, Kataoka and colleagues noted its effective concentration against HCV was 100 times less than the toxic threshold, and similar chemicals are found in many edible plants, suggesting it should be safe as a dietary supplement. In the meantime, the researchers now hope to explore the detailed mechanisms of how this chemical stops HCV replication.

From the Article: "Proanthocyanidin from Blueberry Leaves Suppresses Expression of Subgenomic Hepatitis C Virus RNA" by Masahiko Takeshita, Yo-ichi Ishida, Ena Akamatsu, Yusuke Ohmori, Masayuki Sudoh, Hirofumi Uto, Hirohito Tsubouchi, and Hiroaki Kataoka

Article link: http://www.jbc.org/cgi/content/full/284/32/21165

Corresponding Author: Hiroaki Kataoka, Univeristy of Miyazaki, Japan; Tel: +81-985-85-2809, email: mejina@fc.miyazaki-u.ac.jp

Dr. Kataoka will be away from the lab between Aug 7-13. Dr. Kataoka can still be contacted by email during this time.

You can also contact Hirohito Tsubouchi at htsubo@m2.kufm.kagoshima-u.ac.jp

The American Society for Biochemistry and Molecular Biology is a nonprofit scientific and educational organization with over 12,000 members in the United States and internationally. Most members teach and conduct research at colleges and universities. Others conduct research in various government laboratories, nonprofit research institutions and industry. The Society's student members attend undergraduate or graduate institutions.

Founded in 1906, the Society is based in Bethesda, Maryland, on the campus of the Federation of American Societies for Experimental Biology. The Society's purpose is to advance the science of biochemistry and molecular biology through publication of the Journal of Biological Chemistry, the Journal of Lipid Research, and Molecular and Cellular Proteomics, organization of scientific meetings, advocacy for funding of basic research and education, support of science education at all levels, and promoting the diversity of individuals entering the scientific work force.

For more information about ASBMB, see the Society's Web site at www.asbmb.org.

Nick Zagorski | EurekAlert!
Further information:
http://www.asbmb.org
http://www.jbc.org/cgi/content/full/284/32/21165

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>