Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hedges and edges help pigeons learn their way around

22.01.2014
A study has found that homing pigeons' ability to remember routes depends on the complexity of the landscape below, with hedges and boundaries between urban and rural areas providing ideal landmarks for navigation

A study has found that homing pigeons' ability to remember routes depends on the complexity of the landscape below, with hedges and boundaries between urban and rural areas providing ideal landmarks for navigation.


These are homing pigeons in flight, equipped with GPS trackers. The study found that homing pigeons' ability to remember routes depends on the complexity of the landscape below

Credit: Zsuzsa Ákos

Researchers from Oxford University, the Zoological Society of London and Uppsala University, Sweden released 31 pigeons from four sites around Oxford for an average of 20 flights each. The study, published in Biology Letters this week, found that pigeons were better able to memorise flight paths when the landscape below was of a certain visual complexity, such as rural areas with hedges or copses.

'We discovered that pigeons' ability to memorise routes is highly influenced by the visual properties of the landscape in a 250 metre radius below them,' said lead author Dr Richard Mann of Uppsala University Sweden, formerly of Oxford University where he conducted the study. 'Looking at how quickly they memorise different routes, we see that that visual landmarks play a key role. Pigeons have a harder time remembering routes when the landscape is too bland like a field or too busy like a forest or dense urban area. The sweet spot is somewhere in between; relatively open areas with hedges, trees or buildings dotted about. Boundaries between rural and urban areas are also good.'

Understanding how pigeons learn to find their way is important because they are able to navigate exceptionally well despite having small brains. Whatever method they use to remember routes must therefore make highly efficient use of their limited mental processing power.

'There may be certain rules that free-flying birds use to structure information that enable them to map the environment using their limited brain power,' said co-author Tim Guilford, Professor of Animal Behaviour at Oxford University's Department of Zoology. 'Fundamentally understanding how they do this will tell us more about their abilities and limitations, and could reveal methods that robots with limited processing power might use to navigate.'

Knowing the landscape features that pigeons use to navigate could also help researchers to predict the flight patterns of any birds that are diurnal; active during the day. Identifying the likely flight paths of birds could be of use to conservationists, birdwatchers and town planners.

'Homing pigeons provide a reliable model for studying navigation and there's no reason to believe that other diurnal birds won't use similar methods,' said Professor Guilford. 'We mainly use pigeons for studies like this because we can be confident that they will bring back the GPS devices with the data. With wild birds, there is a real risk that we won't get the equipment and data back, but fundamentally we expect them to use similar navigational methods.'

The study was funded by the Engineering and Physical Sciences Research Council, European Research Council, the Royal Society and the Biotechnology and Biological Sciences Research Council.

Oxford University News | EurekAlert!
Further information:
http://www.ox.ac.uk

More articles from Life Sciences:

nachricht Discovery of a fundamental limit to the evolution of the genetic code
03.05.2016 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Perfect imperfection
03.05.2016 | Christian-Albrechts-Universität zu Kiel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Quantum Logical Operations Realized with Single Photons

03.05.2016 | Physics and Astronomy

Discovery of a fundamental limit to the evolution of the genetic code

03.05.2016 | Life Sciences

Cavitation aggressive intensity greatly enhanced using pressure at bubble collapse region

03.05.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>