Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hebrew University, US scientists find clue to mystery of how biological clock operates on 24-hour cycle

25.11.2009
How does our biological system know that it is supposed to operate on a 24-hour cycle? Scientists at the Hebrew University of Jerusalem have discovered that a tiny molecule holds the clue to the mystery.

Human as well as most living organisms on earth possess circadian a (24-hour) life rhythm. This rhythm is generated from an internal clock that is located in the brain and regulates many bodily functions, including the sleep-wake cycle and eating.

Although the evidence for their existence is obvious and they have been studied for more than 150 years, only recently the mechanisms that generate these rhythms have begun to be unraveled.

A researcher of the Alexander Silberman Institute of Life Sciences at the Hebrew University, Dr. Sebastian Kadener, and one of his students, Uri Weissbein, are among a collaborative group of researchers that have now found that tiny molecules known as miRNAs are central constituents of the circadian clock. Their discovery holds wide-ranging implications for future therapeutic treatment to deal with sleep deprivation and other common disorders connected with the daily life cycle.

The sleep-wake cycle, the most characterized manifestation of the circadian clock, is generated thanks to specialized neurons found both in humans and fruitflies. (The mechanism governing the circadian clock in fruitflies is almost identical to the one mammals -- and humans -- have.)

These neurons have the striking capability of counting time very accurately via a complex process of gene activation and repression that result in a tightly controlled process that takes exactly 24 hours.

The new research by Dr. Kadener and his colleagues, published in an article in the journal Genes and Development (and that was highlighted in Nature Review Neuroscience), has shown that a new mode of regulation has a pivotal importance for the ability of our internal clock to accurately count those 24 hours each day. Specifically, they have shown that the very tiny miRNA molecules are necessary for the circadian rhythms to function.

MiRNAs have recently been discovered and have been shown to be involved in different processes in animals. By the use of new state-of-the-art techniques (most of them developed in the present study) the authors demonstrate that one specific miRNA (called bantam) recognizes and regulates the translation of the gene clock.

This constitutes the first example of a defined miRNA-gene regulation in the central clock. Perhaps even more importantly, the researchers were among the first to prove that there is a clear role of miRNA regulation in the brain in general and behavior in particular.

In addition to Kadener and Weissman, others participating in the research were Prof. Michael Rosbash, Dr. Jerome Menet, Dr. Pipat Nawathean, Prof. Sacha Nelson and Dr. Ken Sugino from Brandeis University in the US and Prof. Phil Zamore, Dr. Michael Horwich and Dr. Vasia Vagin from the University of Massachusetts Medical School.

Jerry Barach | Hebrew University of Jerusalem
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>