Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hebrew University research team discovers path to blocking fatal toxins

14.09.2011
A team of researchers at the Hebrew University of Jerusalem says it has found a way to block a group of fatal bacterial toxins that have to date resisted all attempts to arrest them through the use of conventional drugs.

These toxins, called superantigens, are produced by a group of "violent" staphylococcal and streptococcal bacteria. When these bacteria attack humans, they set off an extreme immune reaction described as an "immune storm," that is, an immune response of a magnitude higher in intensity than during a regular immune reaction. The result is often fatal toxic or septic shock brought on by the excessive immune response.

Working to develop the first effective antidote under funding from the Defense Advanced Research Projects Agency of the US Department of Defense and the US National Institutes of Health, the laboratory headed by Prof. Raymond Kaempfer of the Institute for Medical Research Israel Canada (IMRIC) at the Hebrew University Faculty of Medicine, has studied how superantigen toxins engage the immune system. The researchers discovered that in order to exert its harmful action, a superantigen must first bind to a protein on the surface of the human immune cell, a receptor called CD28.

CD28 has been known for a long time as a key participant in every immune response, but its ability to recognize microbial components -- the superantigens -- came as a complete surprise. The Kaempfer team discovered that superantigens do their lethal work by co-opting CD28 as their receptor, and that binding of a superantigen to CD28 is the key in the pathway to an immune storm.

They mapped the regions where the superantigen and CD28 contact each other and found that to induce an immune storm, superantigens must bind specifically into that part of the CD28 molecule where, normally, it pairs with another CD28 molecule.

Using that insight, they next designed decoys, short protein fragments that mimic the contact domain in the superantigen or in CD28. Such decoys, they could show, act as a monkey wrench that blocks the engagement of CD28 receptor by the superantigen toxin, thereby inhibiting the overly strong immune response and protecting animals from the toxic consequences, including from death.

All the superantigen toxins function via the same CD28 receptor, rendering the decoys broadly effective as protective agents. The decoys proved safe in healthy, normal, laboratory animals.

These findings provide a novel therapeutic approach against toxic shock. The decoys are host-oriented therapeutics, directed at the human immune system itself, rather than at the pathogen. Using a host-oriented therapeutic, resistance cannot arise in the infecting bacteria or in the toxins because the decoy targets a human immune receptor that is constant and will not change.

The work of Kaempfer and his team will be published in the PLoS Biology journal on Sept. 13. Reviewers who have seen an advanced copy have called the work "a surprising result with enormous implications" and "a paradigm shift in superantigen research."

The Kaempfer team involved senior researcher Dr. Gila Arad and graduate students Revital Levy, Iris Nasie, Ziv Rotfogel, Uri Barash, Emmanuelle Supper, Tomer Shpilka, and Adi Minis, with the support of lab technician Dalia Hillman.

Jerry Barach | Hebrew University of Jerusalem
Further information:
http://www.huji.ac.il

Further reports about: CD28 immune cell immune reaction immune response immune system

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>