Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Going Off the Grid’ Helps Some Bacteria Hide from Antibiotics

26.04.2011
Call them the Jason Bournes of the bacteria world.

Going "off the grid," like rogue secret agents, some bacteria avoid antibiotic treatments by essentially shutting down and hiding until it's safe to come out again, says Thomas Wood, professor in the Artie McFerrin Department of Chemical Engineering at Texas A&M University.

This surreptitious and elaborate survival mechanism is explained in the online April edition of "Nature Chemical Biology," which details the research of Wood and his post doctoral student Xiaoxue Wang along with colleagues Breann Brown, Wolfgang Peti and Rebecca Page of Brown University.

"Through our research, we're understanding that some bacteria go to 'sleep,' and that antibiotics only work on bacteria that are metabolically active," Wood explains. "You need actively growing bacteria to be susceptible to antibiotics. If the bacterium goes to sleep, the antibiotics, no matter what they do, are not effective because the bacterium is no longer doing the thing that the antibiotic is trying to shut down."

It's an alternative method for survival, Wood says, that starkly contrasts the widely studied genetically based approaches utilized by bacteria through which bacteria gain resistance to antibiotics as the result of mutations experienced throughout time. This mutation-free response, however, demonstrates that some bacteria need not mutate to survive external stressors, Wood says.

Instead, when triggered by an external stressor such as an antibiotic, a bacterial cell can render itself dormant by triggering an internal reaction that degrades the effectiveness of its own internal antitoxins, Wood explains. With its antitoxins damaged, the toxins present within the bacterial cell are left unchecked and damage the cell's metabolic processes so that it essentially shuts down, he adds.

It's self-inflicted damage but with a purpose.

"The cell normally doesn't want to hurt itself; it wants to grow as fast as possible," Wood states; the raison d'être for a cell is to make another cell," Wood says. "However, most bacteria have this group of proteins, and if this group was active - if you got rid of the antitoxins - this group of toxins would either kill the cell or damage it."

Specifically, Wood and his colleagues found that when encountering oxidative stress, their bacterial cells initiated a process through which an antitoxin called MqsA was degraded, in turn allowing the toxin MqsR to degrade all of the cells' messenger RNA. This messenger RNA, Wood explains, plays a critical intermediate role in the cell's process of manufacturing proteins, so without it the cell can't make proteins. With the protein-manufacturing factory shut down, the bacterial cell goes dormant, and an antibiotic cannot "lock on" to the cell. When the stressor is removed, the bacterial cells eventually come back online and resume their normal activities, Wood says.

"It was the combination of the genetic studies at Texas A&M with our structural studies at Brown University that demonstrated that the proteins MqsR:MqsA form an entirely new family of toxin:antitoxin systems," Page says. "Remarkably, we have shown this system not only controls its own genes, but also many other genes in E. coli, including the gene that controls the response to oxidative stress."

This response mechanism, Wood emphasizes, does not replace the mutation-based approaches that have for years characterized cell behavior; it's merely another method in a multifaceted approach undertaken by bacteria to ensure survival.

"A small community of bacteria is in a sense hedging its bet against a threat to its survival by taking another approach," Wood says. "To the bacteria, this is always a numbers game. In one milliliter you can have a trillion bacterial cells, and they don't always do the same thing under stress.

"If we can determine that this 'going to sleep' is the dominant mechanism utilized by bacteria, then we can begin to figure out how to 'wake them up' so that they will be more susceptible to the antibiotic. This ideally would include simultaneously applying the antibiotic and a chemical that wakes up the bacteria. That's the goal - a more effective antibiotic."

Ryan Garcia | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>