Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gray hair in old age: Hydrogen peroxide inhibits the synthesis of melanin

11.03.2009
Researchers from Mainz and Bradford discover the molecular mechanism for hair turning white and gray in old age

Gray or white hair develops with advancing age in an entirely natural aging process which results in the generation of less and less color pigments.

Researchers of the Johannes Gutenberg University Mainz in Germany und the University of Bradford in Great Britain have now unlocked the secret of hair turning white or gray in old age. According to them, free oxygen radicals are significantly involved in the loss of hair color. "The originator of the entire process is hydrogen peroxide, which we also know as a bleaching agent," explains Professor Heinz Decker of the Institute of Biophysics at Mainz University.

"With advancing age, hydrogen peroxide builds up in larger amounts in the hair follicle and ultimately inhibits the synthesis of the color pigment melanin." The biophysicists in Mainz together with dermatologists from Bradford have revealed the molecular mechanisms of this process for the first time, and they published their findings in the professional journal The FASEB Journal.

Hydrogen peroxide - or H2O2 by its the chemical formula - is a by-product of metabolism, and as such it is generated in small amounts throughout the human body, conse-quently also in hair follicles. With increasing age, the quantity builds up, because the human body can no longer keep up neutralizing the hydrogen peroxide using the enzyme catalyse, which breaks down hydrogen peroxide into its two components water and oxygen. In their work, the scientists showed that in aging cells this enzyme is still present but in very limited concentration. This has dramatic consequences. Hydrogen peroxide attacks the enzyme tyrosinase by oxidizing an amino acid, methionine, at the active site. As a consequence, this key enzyme, which normally starts the synthesizing pathway of the coloring pigment melanin, does not function anymore.

"We now know the specific molecular dynamic that underlies this process," elucidates Decker. The scientists at the Institute of Biophysics at Mainz University have been working for about ten years already on research concerning tyrosinases, which are enzymes present in all organisms and performing a variety of functions. In computer simulations that helped to reveal the molecular mechanisms, the biophysicists were supported by the newly established research focus on "Computer-based Research Methods in the Natural Sciences" at Johannes Gutenberg University Mainz.

Oxidation by hydrogen peroxide not only interferes with the production of melanin, but also inhibits other enzymes that are needed for the repair of damaged proteins. As a re-sult, a cascade of events is set off, at the end of which stands the gradual loss of pig-ments in the entire hair from its root to its tip. With this research work, the scientists from Mainz and Bradford not only solved - on a molecular level - the age-old riddle of why hair turns gray in old age, but also have pointed out approaches for future therapy of vitiligo, a skin pigment disorder. For melanin is not only the pigment in hair, but it is also responsible for color in skin and eyes.

The researchers in Mainz were supported by the Collaborative Research Center 490 "Mechanisms of Invasion and Persistence of Infectious Agents," and the Research Training Group 1043 "Antigen-specific Immunotherapy", both funded by the German Research Foundation (DFG).

Original Publications:
J. M. Wood, H. Decker, H. Hartmann, B. Chavan, H. Rokos, J. D. Spencer, S. Hasse, M. J. Thornton, M. Shalbaf, R. Paus, and K. U. Schallreuter
Senile hair graying: H2O2-mediated oxidative stress affects human hair color by blunt-ing methionine sulfoxide repair

The FASEB Journal, online published on 23 February 2009, doi: 10.1096/fj.08-125435

T. Schweikardt, C. Olivares, F. Solano, E. Jaenicke, J.C. Garcia-Borron and H. Decker
A three-dimensional model of mammalian tyrosinase active site accounting for loss of function mutations

Pigment Cell Research (2007) 20:394-401

H. Decker, T. Schweikardt and F. Tuczek
The first crystal structure of tyrosinase: all questions answered?
Angewandte Chemie International Edition Engl., (2006) 45, 4546 - 4550

Petra Giegerich | idw
Further information:
http://www.biophysik.uni-mainz.de/
http://www.fasebj.org/cgi/content/abstract/fj.08-125435

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>