Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphene imperfections key to creating hypersensitive 'electronic nose'

23.09.2014

Researchers have discovered a way to create a highly sensitive chemical sensor based on the crystalline flaws in graphene sheets. The imperfections have unique electronic properties that the researchers were able to exploit to increase sensitivity to absorbed gas molecules by 300 times. The study is available online in advance of print in Nature Communications.

Amin Salehi- Khojin, asst professor of mechanical and industrial engineering in the lab with Mohammad Asadi, graduate student and Bijandra Kumar, post doc where they are doing research in graphene sensors. Photo: Roberta Dupuis-Devlin/UIC Photo Services

When a graphene lattice or sheet is formed, its polycrystalline structure has random boundaries between the single-crystal grains. The properties of the lattice are significantly affected by these "grain boundaries," said Amin Salehi-Khojin, UIC assistant professor of mechanical and industrial engineering and principal investigator on the study.

In many applications, grain boundaries are considered faults because they scatter electrons and may weaken the lattice. But Salehi-Khojin and his colleagues showed that these imperfections are important to the working of graphene-based gas sensors. They created a micron-sized, individual graphene grain boundary in order to probe its electronic properties and study its role in gas sensing.

Their first discovery was that gas molecules are attracted to the grain boundary and accumulate there, rather than on the graphene crystal, making it the ideal spot for sensing gas molecules. A grain boundary's electrical properties attract molecules to its surface.

A theoretical chemistry group at UIC, led by Petr Kral, was able to explain this attraction and additional electronic properties of the grain boundary. The irregular nature of the grain boundary produces hundreds of electron-transport gaps with different sensitivities.

"It's as though we have multiple switches in parallel," said graduate student Poya Yasaei, first author on the paper. "Gas molecules accumulate on the grain boundary; there is a charge transfer; and, because these channels are all paralleled together, all the channels abruptly open or close. We see a very sharp response."

Researchers have been trying to develop a highly sensitive and robust sensor for decades, said UIC postdoctoral fellow Bijandra Kumar, a co-author on the paper.

"We can synthesize these grain boundaries on a micrometer scale in a controlled way," Kumar said. "We can easily fabricate chip-scale sensor arrays using these grain boundaries for real-world use."

Salehi-Khojin said it should be possible to "tune" the electronic properties of graphene grain-boundary arrays using controlled doping to obtain a fingerprint response -- thus creating a reliable and stable "electronic nose."

With the grain boundary's strong attraction for gas molecules and the extraordinarily sharp response to any charge transfer, such an electronic nose might be able to detect even a single gas molecule, Salehi-Khojin believes, and would make an ideal sensor.

###

Other co-authors are Reza Hantehzadeh, Artem Baskin, Nikita Repnin, Canhui Wang and Robert Klie of UIC and Morteza Kayyalha and Yong Chen of Purdue University.

This work was supported by a UIC Startup budget; National Science Foundation DMR Grant No. 1309765; the acquisition of the UIC JEOL JEM-ARM200CF is supported by a MRI-R2 NSF grant, DMR-0959470; resources of the National Energy Research Scientific Computing Center, supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and the Extreme Science and Engineering Discovery Environment (XSEDE), supported by the NSF Grant No. OCI-1053575; and partial support from the U.S. Defense Threat Reduction Agency.

Jeanne Galatzer-Levy | Eurek Alert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>