Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gold Nanoparticles Follow “Genetic Code”

09.08.2012
Different sequences of DNA influence morphology of growing gold nanocrystals

Gold is not just the material of choice for pretty jewelry; it is also used in technology, for example in nanoscopic particles for applications such as catalysis, biomedicine, and sensors. In the journal Angewandte Chemie, a team of American and Chinese researchers has now demonstrated that the morphology of gold nanoparticles can be controlled when they are synthesized in the presence of DNA. Depending on the DNA sequence used, the shape and surface roughness can be varied.



Because of its defined structure, DNA is often used as a “template” or “scaffold” for the production of nano-objects and nanomaterials. A team led by Yi Lu from the University of Illinois at Urbana-Champaign (USA) and Jinghong Li from the Tsinghua University Beijing (China) have now used gold nanoparticles to demonstrate that DNA can influence the morphology of nanomaterials as well as their structure and functionality.

In order to produce gold nanoparticles, the researchers use a solution of a gold salt to which they add a mild reducing agent and tiny prismatic gold seed crystals. The reducing agent reduces the gold ions of the salt to elemental gold, which is deposited onto the seed crystals. In the presence of short DNA strands, these crystallize further to form larger, defined nanoparticles. In the absence of DNA they form significantly larger, irregularly shaped agglomerates instead.

Interestingly, the length of the DNA strands is irrelevant whereas the identity of the bases (adenine, cytosine, guanine, and thymine) in them is not. If the researchers add DNA that only contains guanine, the resulting nanoparticles are flat hexagons; DNA made of pure thymine produces tiny six-pointed stars with a smooth surface; pure adenine leads to the formation of rounded, rough particles; and cytosine generates round, flat platelets. In each case the particles are of uniform size and shape.

The scientists also tested DNA strands made from two different bases. In most cases the base that is present in larger amounts dominates. However, the combination of thymine and cytosine is interesting. These two bases apparently work synergistically because together they produce a new form: flower-like nanoparticles that are thinner in the middle and thicker at the edges. Increasing the proportion of thymine makes the edges thicker.

“Our work could provide a new method for synthesizing nanoparticles with predictable structures with fine-tuned morphologies for widespread applications,” says Lu. “Nanoparticles with complex shapes and rough surfaces have recently been shown to have enhanced performance as catalytic components and support materials for analytical processes like Surface-Enhanced Raman Spectroscopy. They are also better absorbed by cells.”

About the Author
Dr. Yi Lu is Jay and Ann Schenck Professor of Chemistry at the University of Illinois at Urbana-Champaign. His group is interested in design and directed evolution of novel biocatalysts, biomaterials, and biosensors, including their applications in renewable energy generation, environmental monitoring, medical diagnostics, and targeted drug delivery.
Author: Yi Lu, University of Illinois at Urbana–Champaign (USA), http://www.chemistry.illinois.edu/faculty/Yi_Lu.html
Title: Discovery of the DNA "Genetic Code" for Abiological Gold Nanoparticle Morphologies

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201203716

Yi Lu | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>