Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gold Nanoparticles Follow “Genetic Code”

09.08.2012
Different sequences of DNA influence morphology of growing gold nanocrystals

Gold is not just the material of choice for pretty jewelry; it is also used in technology, for example in nanoscopic particles for applications such as catalysis, biomedicine, and sensors. In the journal Angewandte Chemie, a team of American and Chinese researchers has now demonstrated that the morphology of gold nanoparticles can be controlled when they are synthesized in the presence of DNA. Depending on the DNA sequence used, the shape and surface roughness can be varied.



Because of its defined structure, DNA is often used as a “template” or “scaffold” for the production of nano-objects and nanomaterials. A team led by Yi Lu from the University of Illinois at Urbana-Champaign (USA) and Jinghong Li from the Tsinghua University Beijing (China) have now used gold nanoparticles to demonstrate that DNA can influence the morphology of nanomaterials as well as their structure and functionality.

In order to produce gold nanoparticles, the researchers use a solution of a gold salt to which they add a mild reducing agent and tiny prismatic gold seed crystals. The reducing agent reduces the gold ions of the salt to elemental gold, which is deposited onto the seed crystals. In the presence of short DNA strands, these crystallize further to form larger, defined nanoparticles. In the absence of DNA they form significantly larger, irregularly shaped agglomerates instead.

Interestingly, the length of the DNA strands is irrelevant whereas the identity of the bases (adenine, cytosine, guanine, and thymine) in them is not. If the researchers add DNA that only contains guanine, the resulting nanoparticles are flat hexagons; DNA made of pure thymine produces tiny six-pointed stars with a smooth surface; pure adenine leads to the formation of rounded, rough particles; and cytosine generates round, flat platelets. In each case the particles are of uniform size and shape.

The scientists also tested DNA strands made from two different bases. In most cases the base that is present in larger amounts dominates. However, the combination of thymine and cytosine is interesting. These two bases apparently work synergistically because together they produce a new form: flower-like nanoparticles that are thinner in the middle and thicker at the edges. Increasing the proportion of thymine makes the edges thicker.

“Our work could provide a new method for synthesizing nanoparticles with predictable structures with fine-tuned morphologies for widespread applications,” says Lu. “Nanoparticles with complex shapes and rough surfaces have recently been shown to have enhanced performance as catalytic components and support materials for analytical processes like Surface-Enhanced Raman Spectroscopy. They are also better absorbed by cells.”

About the Author
Dr. Yi Lu is Jay and Ann Schenck Professor of Chemistry at the University of Illinois at Urbana-Champaign. His group is interested in design and directed evolution of novel biocatalysts, biomaterials, and biosensors, including their applications in renewable energy generation, environmental monitoring, medical diagnostics, and targeted drug delivery.
Author: Yi Lu, University of Illinois at Urbana–Champaign (USA), http://www.chemistry.illinois.edu/faculty/Yi_Lu.html
Title: Discovery of the DNA "Genetic Code" for Abiological Gold Nanoparticle Morphologies

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201203716

Yi Lu | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

nachricht X-ray experiments reveal two different types of water
27.06.2017 | Deutsches Elektronen-Synchrotron DESY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

NASA sees quick development of Hurricane Dora

27.06.2017 | Earth Sciences

New method to rapidly map the 'social networks' of proteins

27.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>