Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

All that Glitters is Gold

07.01.2011
Gold Cyclization Reaction Provides Important Building Blocks for Pharmaceuticals

In many significant natural products, furans are a key motif. These oxygen-containing five-membered heterocycles are also versatile building blocks in the construction of highly complex target structures. As such, they are important scaffolds in organic and pharmaceutical chemistry.

As reported in the European Journal of Organic Chemistry, A. Stephen K. Hashmi and a team at Universität Heidelberg (Germany) have now introduced a general protocol for the preparation of highly substituted furans through a gold-catalyzed cyclization reaction.

The efficiency of reactions is often thought of in terms of atom economy, and the search for more efficient alternatives to classical chemical reactions is now an area of intense research. In this context, transition-metal catalysts are becoming a popular choice amongst chemists, because they are often used in only very small amounts, which conforms to the atom-economy rule and minimizes waste. Notably, in contrast to the often harsh conditions required to perform classical chemical transformations, most transition-metal catalyzed reactions can be performed under mild reaction conditions and within a short timeframe.

Because gold catalysts are robust, their popularity has increased significantly in the last few years. Gold catalysts can easily be handled in air, and they are also tolerant to water. Moreover, gold catalysts often show higher activity and higher selectivity than their more popular palladium counterparts. Gold is particularly well suited for substrates that bear a triple carbon–carbon bond (i.e., an alkyne), as it coordinates preferentially to this bond, resulting in a highly reactive complex that is prone to attack. As such, the gold-catalyzed cyclization of an alkyne tethered to an alcohol can provide easy access to highly substituted furans.

The German research team found that the gold(I)-catalyzed cyclization of various 2-alkynylallyl alcohols proceeded well and afforded the desired furan products with the use of low catalyst loadings under very mild reaction conditions. Importantly, both di- and trisubstituted furans could be obtained, which allows structural variety in the building blocks. Bifunctional substrates could also be cyclized to provide chemically interesting bisfurans. This synthetically simple route provides quick and easy access to highly substituted furan building blocks, which may help to facilitate the study of this important class of compounds.

Author: A. Stephen K. Hashmi, Universität Heidelberg (Germany),

Title: Cyclization of 2-Alkynylallyl Alcohols to Highly Substituted Furans by Gold(I)–Carbene Complexes

European Journal of Organic Chemistry, Permalink to the article: http://dx.doi.org/10.1002/ejoc.201001479

A. Stephen K. Hashmi | Wiley-VCH
Further information:
http://www.wiley-vch.de

Further reports about: Cyclization Glitters building block chemical reaction

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>