Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gladstone scientists identify key factor that controls HIV latency

29.06.2009
Discovery may offer potential strategy for therapies to clear HIV

Scientists at the Gladstone Institutes of Virology and Immunology (GIVI) have found another clue that may lead to eradication of HIV from infected patients who have been on antiretroviral therapy. A real cure for HIV has been elusive because the virus can "hide" in a latent form in resting CD4-T cells. By understanding this "latency" effect, researchers can identify ways to reactivate the virus and enable complete clearance by current or future therapies.

Researchers in the laboratory of GIVI Associate Director Eric Verdin, MD have found that methylation of cytosine in the DNA of infected cells is associated with HIV latency and that inhibition of DNA methylation causes the reactivation of latent HIV. These observations offer a potential new strategy for inhibiting HIV latency and reactivating the virus. The discovery was reported in the current edition of PLoS Pathogens.

"While HIV-1 latency is likely to be a multifactorial process, we have shown that inhibiting the methylation of the provirus contributes to an almost complete reactivation of latent HIV-1," said lead author Steven E. Kauder.

The research team, which also included scientists from the University of Utah and Stockholm's Karolinska Institute, developed in vitro models of HIV-1 latency in T cells that harbor a full-length HIV genome. The provirus in the cell lines also encoded a fluorescent marker to illuminate HIV-1 transcriptional activity.

In addition to finding that DNA methylation is a mechanism of latency, the scientists also discovered that a host protein, called methlyl-CpG binding domain protein 2 (MBD2) binds to the methylated HIV DNA and is an important mediator of latency.

"Interfering with methylation greatly potentiates the reactivation of HIV," Kauder said. In this study, the researchers found that the drug 5-aza-2'deoxycytidine (aza-CdR) can inhibit HIV methylation and cause the virus to reactivate.

"Combined with other areas of our investigation into HIV latency, this research provides important new knowledge about the process and opens many new pathways for future study," said Dr. Verdin, senior author of the study.

The research team included Alberto Bosque and Vicente Planelles of the University of Utah and Annica Lindqvist of Karolinska University. The study was supported by the National Institutes of Health

Eric Verdin's primary affiliation is with the Gladstone Institute of Virology and Immunology, where his laboratory is located and all his research is conducted. He is also professor of medicine at the University of California, San Francisco.

About the Gladstone Institutes

The J. David Gladstone Institutes, an independent, nonprofit biomedical research organization, affiliated with the University of California, San Francisco, is dedicated to the health and welfare of humankind through research into the causes and prevention of some of the world's most devastating diseases. Gladstone is comprised of the Gladstone Institute of Cardiovascular Disease, the Gladstone Institute of Virology and Immunology and the Gladstone Institute of Neurological Disease.

Valerie Tucker | EurekAlert!
Further information:
http://www.gladstone.ucsf.edu

Further reports about: DNA DNA methylation Disease GIVI Gladstone HIV HIV latency HIV-1 Immunology T cells Virology devastating disease

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>