Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gladstone scientists identify key factor that controls HIV latency

29.06.2009
Discovery may offer potential strategy for therapies to clear HIV

Scientists at the Gladstone Institutes of Virology and Immunology (GIVI) have found another clue that may lead to eradication of HIV from infected patients who have been on antiretroviral therapy. A real cure for HIV has been elusive because the virus can "hide" in a latent form in resting CD4-T cells. By understanding this "latency" effect, researchers can identify ways to reactivate the virus and enable complete clearance by current or future therapies.

Researchers in the laboratory of GIVI Associate Director Eric Verdin, MD have found that methylation of cytosine in the DNA of infected cells is associated with HIV latency and that inhibition of DNA methylation causes the reactivation of latent HIV. These observations offer a potential new strategy for inhibiting HIV latency and reactivating the virus. The discovery was reported in the current edition of PLoS Pathogens.

"While HIV-1 latency is likely to be a multifactorial process, we have shown that inhibiting the methylation of the provirus contributes to an almost complete reactivation of latent HIV-1," said lead author Steven E. Kauder.

The research team, which also included scientists from the University of Utah and Stockholm's Karolinska Institute, developed in vitro models of HIV-1 latency in T cells that harbor a full-length HIV genome. The provirus in the cell lines also encoded a fluorescent marker to illuminate HIV-1 transcriptional activity.

In addition to finding that DNA methylation is a mechanism of latency, the scientists also discovered that a host protein, called methlyl-CpG binding domain protein 2 (MBD2) binds to the methylated HIV DNA and is an important mediator of latency.

"Interfering with methylation greatly potentiates the reactivation of HIV," Kauder said. In this study, the researchers found that the drug 5-aza-2'deoxycytidine (aza-CdR) can inhibit HIV methylation and cause the virus to reactivate.

"Combined with other areas of our investigation into HIV latency, this research provides important new knowledge about the process and opens many new pathways for future study," said Dr. Verdin, senior author of the study.

The research team included Alberto Bosque and Vicente Planelles of the University of Utah and Annica Lindqvist of Karolinska University. The study was supported by the National Institutes of Health

Eric Verdin's primary affiliation is with the Gladstone Institute of Virology and Immunology, where his laboratory is located and all his research is conducted. He is also professor of medicine at the University of California, San Francisco.

About the Gladstone Institutes

The J. David Gladstone Institutes, an independent, nonprofit biomedical research organization, affiliated with the University of California, San Francisco, is dedicated to the health and welfare of humankind through research into the causes and prevention of some of the world's most devastating diseases. Gladstone is comprised of the Gladstone Institute of Cardiovascular Disease, the Gladstone Institute of Virology and Immunology and the Gladstone Institute of Neurological Disease.

Valerie Tucker | EurekAlert!
Further information:
http://www.gladstone.ucsf.edu

Further reports about: DNA DNA methylation Disease GIVI Gladstone HIV HIV latency HIV-1 Immunology T cells Virology devastating disease

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>