Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giving Ancient Life Another Chance to Evolve

13.07.2012
It’s a project 500 million years in the making. Only this time, instead of playing on a movie screen in Jurassic Park, it’s happening in a lab at the Georgia Institute of Technology.

Using a process called paleo-experimental evolution, Georgia Tech researchers have resurrected a 500-million-year-old gene from bacteria and inserted it into modern-day Escherichia coli (E. coli) bacteria. This bacterium has now been growing for more than 1,000 generations, giving the scientists a front row seat to observe evolution in action.

“This is as close as we can get to rewinding and replaying the molecular tape of life,” said scientist Betül Kaçar, a NASA astrobiology postdoctoral fellow in Georgia Tech’s NASA Center for Ribosomal Origins and Evolution. “The ability to observe an ancient gene in a modern organism as it evolves within a modern cell allows us to see whether the evolutionary trajectory once taken will repeat itself or whether a life will adapt following a different path.”

In 2008, Kaçar’s postdoctoral advisor, Associate Professor of Biology Eric Gaucher, successfully determined the ancient genetic sequence of Elongation Factor-Tu (EF-Tu), an essential protein in E. coli. EFs are one of the most abundant proteins in bacteria, found in all known cellular life and required for bacteria to survive. That vital role made it a perfect protein for the scientists to answer questions about evolution.

After achieving the difficult task of placing the ancient gene in the correct chromosomal order and position in place of the modern gene within E. coli, Kaçar produced eight identical bacterial strains and allowed “ancient life” to re-evolve. This chimeric bacteria composed of both modern and ancient genes survived, but grew about two times slower than its counterpart composed of only modern genes.

“The altered organism wasn’t as healthy or fit as its modern-day version, at least initially,” said Gaucher, “and this created a perfect scenario that would allow the altered organism to adapt and become more fit as it accumulated mutations with each passing day.”

The growth rate eventually increased and, after the first 500 generations, the scientists sequenced the genomes of all eight lineages to determine how the bacteria adapted. Not only did the fitness levels increase to nearly modern-day levels, but also some of the altered lineages actually became healthier than their modern counterpart.

When the researchers looked closer, they noticed that every EF-Tu gene did not accumulate mutations. Instead, the modern proteins that interact with the ancient EF-Tu inside of the bacteria had mutated and these mutations were responsible for the rapid adaptation that increased the bacteria’s fitness. In short, the ancient gene has not yet mutated to become more similar to its modern form, but rather, the bacteria found a new evolutionary trajectory to adapt.

The results were presented at the recent NASA International Astrobiology Science Conference. The scientists will continue to study new generations, waiting to see if the protein will follow its historical path or whether it will adopt via a novel path altogether.

“We think that this process will allow us to address several longstanding questions in evolutionary and molecular biology,” said Kaçar. “Among them, we want to know if an organism’s history limits its future and if evolution always leads to a single, defined point or whether evolution has multiple solutions to a given problem.”

Jason Maderer | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>